Устройство и принцип действия
Водных растворов, пластовых вод
Серия вихреакустических преобразователей расхода предназначена для измерения объемного расхода и объема водопроводной, теплофикационной, технической воды, водных растворов, пластовых вод с вязкостью не более 2 сСт.
Сферы применения:
- системы коммерческого учета тепловой энергии, ГВС, ХВС на объектах коммунального хозяйства и промышленности;
- системы технологического контроля и АСУТП в различных отраслях промышленности.
Устройство и принцип действия
Суть вихреакустического принципа измерения расходасостоит в измерении скорости потока путем определения частоты образования вихрей за телом обтекания, установленным в проточной части преобразователя расхода. Определение частоты вихреобразования производится при помощи ультразвука, имеющего частоту 1МГц ("ультразвуковое детектирование вихрей").
Устройство:
1. тело обтекания - призма трапецеидального сечения;
2. пьезоизлучатели ПИ;
3. пьезоприемники ПП;
4. генератор;
5. фазовый детектор;
6. микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов;
7. термодатчик.
Преобразователь представляет собой моноблочную конструкцию, состоящую из проточной части и электронного блока. В корпусе проточной части расположены: тело обтекания - призма трапецеидального сечения (1), пьезоизлучатели ПИ (2), пьезоприемники ПП (3) и термодатчик (7). Электронный блок включает в себя генератор (4), фазовый детектор (5), микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов (6), смонтированные на печатной плате. Для контроля работы пребразователей на колодке установлены 2 светодиода - зеленый и красный. Зеленый светодиод сигнализирует о нормальной работе преобразователя, при этом частота мигания соответствует частоте следования импульсов выходного
сигнала преобразователя. Красный светодиод загорается при возникновении нештатной ситуации: расходе, меньшем 0,8Qmin или хаотичном характере процесса вихреобразования, который возможен, в частности, при попадании посторонних предметов на тело обтекания. Тело обтекания (ТО) установлено на входе жидкости в
проточную часть. При обтекании ТО потоком жидкости за ним образуется вихревая дорожка, частота следования вихрей в которой с высокой точностью пропорциональна скорости потока, а, следовательно, и расходу. За ТО в корпусе проточной части диаметрально противоположно друг другу установлены стаканчики, в которых собраны ультразвуковой пьезоизлучатель (ПИ) и пьезоприемник (ПП).
В зависимости от типа преобразователи имеют 2 конструктивных исполнения:
однолучевые преобразователи - одна пара ПИ-ПП (Dу 25-200 мм);
двухлучевые преобразователи - две пары ПИ-ПП (Dу 250, 300 мм).
От генератора на ПИ подается переменное напряжение, которое преобразуется в ультразвуковые колебания. При прохождении через поток, в результате взаимодействия с вихрями, ультразвуковые колебания модулируются по фазе. На ПП модулированные ультразвуковые колебания вновь преобразуются в напряжение, которое подается на фазовый детектор.
На фазовом детекторе определяется разность фаз между:
- сигналами с ПП и опорного генератора – для однолучевых преобразователей;
- сигналами с ПП первой и второй пары пьезоэлементов для двухлучевых преобразователей.
Напряжение на выходе фазового детектора по частоте и амплитуде соответствует частоте и интенсивности следования вихрей, которая, в силу пропорциональности скорости потока, является мерой расхода.
Для фильтрации случайных составляющих сигнал с фазового детектора подается на микропроцессорный адаптивный фильтр и, затем, в блок формирования выходных сигналов. Для повышения достоверности показаний при обработке сигнала вычисляется дисперсия периода колебаний вихрей.
Для расширения динамического диапазона в область малых расходов, где характеристика преобразователя нелинейна и зависит от температуры теплоносителя, применяется температурная коррекция. Для этого в корпусе проточной части установлен термодатчик, сигнал от которого вводится в программу вычисления расхода. Проточная часть преобразователя изготовлена из нержавеющей стали и обработана по высокому классу чистоты поверхности, что минимизирует образование отложений и тем самым стабилизирует метрологические характеристики.
Для проведения периодической поверки по беспроливной (имитационной) методике ТО выполнено съемным. Электронный блок размещен в отдельном корпусе, соединенном с проточной частью трубчатым кронштейном.
Внутри трубчатого кронштейна проходят провода, соединяющие плату электроники с пьезоэлементами.
Преобразователи в базовом исполнении имеют в обязательном порядке импульсные выходные сигналы.
На боковой стороне корпуса электронного блока располагаются штепсельный разъем или сальниковый кабельный ввод, которые служат для соединения преобразователей с вторичными приборами (вычислителями) и источниками питания. Корпус закрыт крышками, уплотнение которых производится резиновыми прокладками, что обеспечивает его герметичность.