Производство тепловой энергии из биомасс
Биомасса – органическое вещество, генерируемое растениями в процессе фотосинтеза, при подводе солнечной (световой) энергии. Биомасса является как бы аккумулятором солнечной энергии. Энергия биомассы используется двумя способами: путем непосредственного сжигания (дров, торфа, отходов сельскохозяйственной продукции) и путем глубокой переработки исходной биомассы с целью получения из нее более ценных сортов топлива – твердого, жидкого или газообразного, которое может быть сожжено с высоким КПД при минимальном загрязнении окружающей среды. Второй способ перспективен и позволяет использовать в качестве первичных энергоносителей такие биомассы, которые не поддаются утилизации путем прямого сжигания в топочных устройствах. Эти биомассы представляют собой бытовые и промышленные отходы, ухудшающие состояние среды обитания человека. Поэтому их переработка, проводимая в целя получения энергии, позволяет одновременно решить и экологическую задачу. Основными источниками биомассы служат промышленные и городские отходы, отходы животноводства, сельского и лесного хозяйства и водоросли.
При непосредственном сжигании биомассы химическая энергия горючих компонентов преобразуется в тепловую энергию высокотемпературного теплоносителя – газообразных продуктов горения (дымовых газов), которые из топочного устройства подаются в то или иное теплоиспользующее устройство: водонагреватель, парогенератор, воздушный калорифер, сушильную установку. При предварительной обработке из твердых городских отходов выделяют фракции черных и цветных металлов, негорючие твердые компоненты, стекло. Крупные куски измельчают до получения однородной массы, которую затем обезвоживают в специальных сушильных установках, а сжигание производят в топках котельных агрегатов.
При термохимической обработке биомассы отходы подвергают тепловому и химическому воздействию, при котором органическая часть биомассы разлагается с образованием твердого горючего вещества, горючих газов или жидкого топлива. Каждый из этих продуктов представляет собой высококачественное, эффективное и экологически чистое топливо, сжигание которого осуществляется в обычных топочных устройствах. Основу термохимической обработки составляет пиролиз – термическое разложение органической массы отходов при ее нагревании.
Пиролиз осуществляется в различных аппаратах: конвертерах, где происходит конверсия (преобразование) вещества; реакторах, где идут химические реакции; газификаторах или газогенераторах, где образуются газообразные продукты разложения органики. Некоторые методы термохимической обработки твердых отходов предусматривают предварительное выделение фракций негорючей части биомассы, их очистку и механическую обработку с целью повторного хозяйственного использования. Комплексность утилизации отходов и исключение необходимости складирования и захоронения конечных продуктов их переработки придают таким методам особую привлекательность. В результате термохимической обработки биомассы получают топливный газ, жидкое пиротопливо и твердое топливо – углистое вещество. Общий энергетический КПД газификации составляет 50...70 %. Помимо неизбежных потерь теплоты через ограждения и от недожога топлива, значительная часть энергии тратится на сушку сырья.
Анаэробная ферментация биомассы представляет собой микробиологический процесс разложения сложных органических веществ без доступа воздуха. При ферментации происходит превращение углеводородов (брожение) и белков (гниение) в биогаз – смесь метана СН4 (до 60...70 %), диоксида углерода СО4, азота N2, водорода Н2 и кислорода (вместе 1...6 %), и образуется стабилизированный осадок исходной биомассы. Биогаз является высококалорийным, удобным для практического использования топливом, а стабилизированный осадок – органическим удобрением. В процессе ферментации биомасса теряет неприятный запах и при этом погибает патогенная микрофлора. При анаэробной ферментации решаются энергетические и экологические вопросы, в том числе проблема складирования и хранения отходов.
К веществам для анаэробной ферментации относят осадки городских сточных вод, стоки животноводческих и птицеводческих ферм, твердые бытовые отходы, остатки перерабатываемого растительного сырья, опилки. Не требуется разделения материала по гранулометрическому составу и их обезвоживания перед анаэробной ферментацией, напротив, исходное сырье предварительно увлажняют, но размеры частиц биомассы для ускорения разложения не должны превышать 4 мм.
На интенсивность образования биогаза существенно влияет температурный режим процесса. Начальная температура биомассы обычно меньше оптимальной, поэтому ее подогревают перед поступлением в метантенк либо в самом ферментере. Метантенк – резервуар для биологической переработки (сбраживания при температуре 27…55 °С) с помощью бактерий микроорганизмов. Оптимальные значения температур ферментации зависят от вида метаногенных бактерий.
Существуют два вида микроорганизмов: мезофильные, наиболее активные при 20...40 °С, и термофильные, активные при 45...70 °С. Эту температуру биомассы в ферментационном бассейне (метантенке) нужно поддерживать в процессе ферментации. Греющей средой является горячая вода или водяной пар. Площадь теплообменной поверхности аппарата выбирается такой, чтобы биомасса была нагрета до верхнего значения температуры в рекомендуемом температурном интервале. Тогда при остывании биомассы в метантенке ее температура не выйдет за допустимые пределы.
Технология получения биогаза из сельскохозяйственных отходов изображена на рис. 9.
Технология переработки сводится к разбавлению отходов животноводства водой в приемном резервуаре 1, выделению из них песка и других минеральных примесей, сбраживанию обводненных отходов в метатенке 2 в условиях их постоянного перемешивания при температуре до 60 °С. Образующийся газ сжимается в компрессоре 3 и направляется в аппарат 4 для разделения СН4 и СО2. Метан направляется в котельный агрегат 5 для производства тепловой энергии путем его сжигания, а двуокись углерода – на питание водорослей в бассейне 6. Стоки, обработанные в метатенке 2, подаются на центрифугу 7, откуда обезвоженный осадок и водоросли направляются на приготовление корма 8, а жидкие стоки из центрифуги – в бассейн 6 для выращивания водорослей и на разбавление исходных отходов в приемный резервуар 1. Таким образом, утилизируются все побочные продукты процесса сбраживания отходов: метан, двуокись углерода и твердый остаток. Аналогично происходит переработка растительных отходов.
Рис.9. Технологическая блок-схема получения биогаза из сельскохо-зяйственных отходов:
1 – приемный резервуар; 2 – метантенк; 3 – компрессор; 4 – аппарат разделения CH4 и СO2; 5 – котельный агрегат; 6 – бассейн; 7 – центрифуга; 8 –цех приготовления корма
Биогаз имеет теплоту сгорания 17...21 МДж/м3 и широко применяется в различных энергоустановках для выработки электрической и тепловой энергии. Особенно перспективно производство биогаза в сельском хозяйстве, где из-за резкого роста цен на традиционные энергоносители появление всевозможных производств из отходов животноводства и растениеводства есть естественное следствие производственной деятельности.
Этанол (этиловый спирт С2Н5ОН) получается из биомассы при спиртовом анаэробном сбраживании и используется как жидкое топливо, способное в определенной мере заменить дорогостоящий бензин.
Городские отходы для производства тепловой энергии используют по мере концентрации населения в городах и крупных поселках. Сжигание отходов осуществляется в специальных мусоросжигательных установках, а также в топках обычных котлов в качестве присадки (до 10 %) к основному топливу. Схема энергетического использования городских бытовых отходов на мусоросжигательном заводе или установке реализуется в одном здании, что обеспечивает соблюдение санитарно-гигиенических норм, установленных для города.
Она включает: отделение приемки и складирования отходов, систему подачи отходов в загрузочную воронку, сжигание отходов в топке котла с наклонной колосниковой решеткой. Установка позволяет также утилизировать параллельно с твердыми отходами городской шлам (влажные тонко измельченные твердые отходы). Шлам предварительно обезвоживается механически в центрифугах и затем через мельницу-сушилку в подсушенном виде вводится в виде пыли над слоем горящих твердых отходов. Сушильным агентом в мельнице-сушилке служат высокотемпературные продукты сгорания, которые отбираются в верхней части топочного объема, обеспечивая тем самым их рециркуляцию, что снижает образование вредных газообразных веществ при сжигании отходов. Продукты сгорания, выводимые из котла, подвергаются тщательной очистке, в том числе в электро- или тканевых сепараторах (фильтрах) с последующей мокрой очисткой в скруббере. Из скруббера они выбрасываются в дымовую трубу. Котел может быть паровым и водогрейным. Зола и шлак, образующиеся после сгорания отходов, собираются в шлакоприемник и затем отводятся в шлаковый бункер, из которого вывозятся за пределы завода.
ЗАКЛЮЧЕНИЕ
Тепловая энергия – необходимое условие жизнедеятельности человека и создания благоприятных условий его быта. Повышение надежности и экономичности систем теплоснабжения зависит от работы теплогенерирующих установок, рационально спроектированной тепловой схемы котельной, широкого внедрения энергосберегающих технологий и альтернативных источников энергии, экономии топлива, тепловой и электрической энергии. Энергосбережение и оптимизация систем производства и распределения тепловой энергии, корректировка энергетических и водных балансов позволяют улучшить перспективы развития теплоэнергетики и повысить технико-экономические показатели оборудования теплогенерирующих установок.
Альтернативы энергосбережению в настоящее время, безусловно, нет.
Поэтому покрытие дефицита энергии следует осуществлять за счет таких ее источников, которые обладали бы уникальными свойствами: были возобновляемыми, экологически чистыми и не приводили бы к поступлению на планету дополнительного количества теплоты. Такими источниками являются солнечная энергия, энергия ветра и биомассы, энергия морских волн и приливов, геотермальная энергия и ряд других нетрадиционных и возобновляемых источников энергии.
В экономике России энергосбережение и энергосберегающие технологии должны быть приоритетными при внедрении их в производство. Знания принципов работы, расчета и эксплуатации оборудования теплогенерирующих установок позволяют определить – где, что, в каких количествах, куда и почему теряется. Эффективность, безопасность, надежность и экономичность работы оборудования котельных во многом определяются методом сжигания топлива, совершенством и правильностью выбора оборудования и приборов, своевременностью и качеством проведения пусконаладочных работ, квалификацией и степенью подготовки обслуживающего персонала.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.Фокин В.М. Теплогенерирующие установки систем теплоснабжения. М.: «Издательство Машиностроение-1», 2006. 240 с.
2. Карауш С.А. Теплогенерирующие установки систем теплоснабжения: Учебное пособие для студентоввузов, обучающихся по направлению «Строительство»/ А.Н. Хуторной. - Томск: Томский государственный архитектурно-строительный университет, 2003.- 161 с.
3. Губарев, А.В., Васильченко, Ю.В. Г93 Теплогенерирующие установки. Часть 1: учебное пособие / А.В. Губарев, Ю.В. Васильченко; Под общ. ред. Ю.В. Васильченко. – Белгород: Изд-во БГТУ им. В.Г. Шухова, 2008. – 162 с.
4. http://za4eti.ru/referat/vvqsm
5. http://www.bestreferat.ru/referat-67075.html
6. http://allbest.ru/o-2c0b65635b2ad78a5c43a88521316d37-2.html
7. http://www.c-o-k.ru/images/library/cok/237/23751.pdf
8. http://www.kigit.ru/files/faculties/bakalavr/umkd-stroit/tepl-ust-st.pdf