Теплові двигуни, їх види. Будова та принцип дії.

Тепловий двигун - машина, призначена для перетворення теплової енергії на механічну роботу. Джерелом тепла теплового двигуна є переважно органічне паливо. До теплового двигуна з зовнішнім згорянням палива належать парові машини і парові турбіни, до теплового двигуна з внутрішнім згорянням - двигуни внутрішнього згоряння, газові турбіни і реактивні двигуни. В кожному тепловому двигуні розрізняють нагрівник і холодильник. Робоче тіло двигуна, одержавши певну кількість тепла Q1 від нагрівника, розширюється в двигуні, а далі виходить у холодильник (напр. в конденсатор), віддаючи йому кількість тепла Q2 . Різниця між підведеним (Q1) і відведеним (Q2) теплом перетворюється у двигуні на механічну роботу; при цьому стан робочого тіла змінюється за замкненим циклом. Ефективність теплового двигуна визначають термічним, або термодинамічним, коефіцієнтом корисної дії, що являє собою відношення кількості тепла, перетвореного на роботу, до кількості підведеного тепла.

Карно (Carnot) Нікола-Леонардо-Саді (1.06.1796 - 24.08.1832) - французький інженер, один з перших творців теорії теплових двигунів. Син Л.-Н. Карно. В 1814 закінчив політехнічну школу в Парижі. Карно написав єдиний, але визначний твір “Міркування про рушійну силу вогню та про машини, здатні розвивати цю силу” (1824), в якому вперше сформулював положення 2-го начала термодинаміки. Карно запровадив поняття про круговий тепловий процес в машинах (т.з. цикл Карно), один з перших прийшов до правильного розуміння 1-го начала термодинаміки - закону збереження енергії стосовно до теплових процесів.


Цикл Карно


Цикл Карно - ідеальний коловий процес зміни стану термодинамічної системи. Вперше цей цикл 1824 року розглянув Н.-Л.-С. Карно. Карно цикл складається з двох ізотермічних процесів і двох адіабатичних процесів, що поперемінно чергуються між собою. Для здійснення його треба мати нагрівник, який передає робочому тілу деяку кількість тепла Q1 при його ізотермічному розширенні, і холодильник, який забирає від робочої речовини кількість тепла Q2 при її ізотермічному стисненні.

Коефіцієнт корисної дії цикл Карно виражає формулою

 

η = (Т1 - Т2) / Т1

де Т1 - абсолютна температура нагрівника,
Т2 - абсолютна температура холодильника, і не залежить від робочої речовини.

Коефіцієнт корисної дії будь-якого іншого циклу в тих самих межах т-р Т1 і Т2 не може бути вищим за ККД циклу Карно. Цикл Карно дав можливість розв'язати проблему підвищення ккд теплових машин, встановити шкалу т-р, яка не залежить від вибору термометричного тіла. Ідеям Карно надав доступної математичної форми Б. Клапейрон (1834). Згодом ці ідеї переглянули англійський вчений У. Томсон і німецький вчений Р. Краузіус та узагальнили їх в один з основних законів термодинаміки - друге її начало, яке твердить, що не можна здійснити такий процес, при якому все тепло можна було б перетворити на роботу.


Коефіцієнт корисної дії (ККД) - відношення кількості корисної енергії, яку одержують від будь-якого її перетворювача за певний час, до кількості енергії, що підводять до нього за цей самий час. ККД виражають правильним дробом або в процентах і позначають грецькою літерою η. У паровому котлі ККД - відношення кількості тепла, що виводять з котла разом із парою, до кількості тепла, яке одержують в топці котла при спалюванні палива. В тепловому двигуні ККД -відношення кількості одержаної корисної механічної роботи до кількості затраченої теплової енергії. ККД є важливою технічною характеристикою кожного перетворювача енергії і завжди менший за одиницю. ККД парової машини досягає 0,2, двигуна внутрішнього згорання - 0,35, електричних трансформаторів - 0,98. У пристрої, в якому енергія перетворюється неодноразово і послідовно, розрізняють, крім повного, частинні ККД кожного ступеня перетворення. Повний ККД називають ще загальним, економічним, технічним тощо. Частинні ККД бувають термічні, механічні та ін. Повний ККД пристрою дорівнює добуткові всіх частин.

Теплові двигуни з зовнішнім згоряннямПарові машини

 

Парова машина - тепловий двигун з рухомим поршнем, призначений для перетворення теплової енергії пари на механічну роботу.
Перші спроби використати силу пари для механічної роботи були відомі з давніх часів. На початку 16 ст. Леонардо да Вінчі розробив ескіз парової гармати, посилаючись на те, що вона була винайдена ще Архімеловим. Наприкінці 17 - на початку 18 ст. винахідниками різних країн (англійськими дослідниками Т. Севері і Т. Ньюкоменом, французьким фізиком Д. Папером та ін.) були створені парові установки, що використовувались переважно для відкачування води з шахт і рудників. Творцем першої в світі універсальної парової машини, випробуваної 1766 на Барнаульському з'їзді, був російський теплотехнік І.І. Ползунов. У 1784 англійський винахідник Дж. Уатт дістав патент на досконалішу і економічнішу універсальну парову машину з підвищеним тиском пари. Винайдення цієї машини (головні її риси збереглися й досі) сприяло бурхливому розвиткові виробництва спочатку в Англії, а згодом в інших країнах. У 19 ст. парові машини були основними двигунами майже в усіх галузях промисловості. Створення й удосконалення парової машини привело до розвитку нової науки - термодинаміки.
Сучасні парові машини розрізняють за багатьма ознаками. Вони бувають простої (пара підводиться з одного боку поршня) і подвійної (з двох боків) дії; вертикальні і горизонтальні (залежно від розміщення циліндрів); для перегрітої і насиченої пари; одно- і багатоциліндрові; тихо- і швидкохідні; з випуском спрацьованої пари в атмосферу і з конденсацією її; з одно- і багатоступінним розширенням пари тощо.

 

 

Залежно від призначення парової машини поділяють на стаціонарні, локомобільні, паровозні, суднові.
В стаціонарній горизонтальній одноциліндровій паровій машині подвійної дії свіжа пара надходить з котла парового в ліву порожнину циліндра і, тиснучи на поршень, рухає його праворуч. Одержану енергію поршень за допомогою кривошипно-шатунного механізму передає головному валу, обертаючи його. З вала енергія передається на верстат або на іншу машину. Після виходу спрацьованої пари в атмосферу або в конденсатор (в багатоступеневих машинах - в збірник наступного ступеня) нова порція свіжої пари надходить в праву порожнину циліндра. Відмірювання порцій пари здійснюється системою паророзподілу, яка проводиться в рух від вала. Щоб згладити нерівномірність обертання головного вала, на ньому насаджено важкий маховик. Зміну тиску (р) і об'єму (V) пари під час роботи парової машини записують у вигляді індикаторної діаграми, яка дає можливість визначити економічність і потужність машини. Ділянка діаграми 1-2 (дивитись додаток, рис.1) відповідає заповненню порожнини свіжою парою; 2-3-розширенню пари; 4-1-стиску залишків пари в порожнині (і нової і порції пари у котлі). Площа, обмежена кривою 1-2-3-4-1, пропорційна роботі, виконаній парою за один цикл машини. Особливості парової машини: надійність в роботі, можливість довгочасних і значних перевантажень, нескладність експлуатації, низька економічність, громіздкість. ККД парової машини досягає 0,2-0,25. Парові машини застосовують на залізничному і водному транспорті, на деяких підприємствах (цукрових заводах, паперових фабриках) тощо.

 

Парова турбіна

Парова турбіна - тепловий двигун з обертовим ротором, призначений для перетворення потенціальної енергії пари на кінетичну, а кінетичної енергії пари - на механічну роботу. Парову турбіну широко застосовують у багатьох галузях народного господарства, зокрема на теплових електростанціях.
Ідея створення парової турбіни виникла приблизно за 100 років до н.е. Першим принцип роботи реактивної парової турбіни (що був використаний в кулі, яка оберталася від діяння реактивної сили пари) описав Герон Олександрійський. В 1629 італійський архітектор і інженер Д. Бранка у книзі “Машина” дав опис оберненого парового колеса - прототипу активної парової турбіни. В Росії перші малопотужні парові турбіни були розроблені 1806-1813 на Сузунському з'їзді (Алтай) механіком П. Залєсовим. Перші парові турбіни, що мали промислове значення, були створені Ч. Парсонсом (турбіна реактивного типу, 1884) і К.-Г.-П. Лавалем (турбіна активного типу, 1889). У 1990 американський інженер Г. Кертіс розробив парову турбіну зі ступенями швидкості (т.з. колесо Кертіса). У 1912 шведські інженери брати Б. і Ю. Ангстреми запровадили парову турбіну радіального типу. В СРСР першу вітчизняну парову турбіну потужністю 2000 кВт було збудовано 1924 на Ленінградському металічному з'їзді. У 1934 став до ладу Харківський турбінний з'їзд ім. С. М. Кірова, де будували одноциліндрові парові турбіни потужністю 50 000 кВт, а з 1938 - 100 000 кВт.
Парова турбіна складається з нерухомої частини - статора з нерухомими напрямками апаратами (соплами) і рухомої - обертового ротора з дисками, що на них закріплено робочі лопатки. Пара, що надходить по паропроводу з котла парового, потрапляє у сопла парової турбіни, де розширюється, внаслідок чого її швидкість збільшується (потенціальна енергія пари перетворюється на кінетичну); виходячи з сопел, пара з великою швидкістю обтікає робочі лопатки, внаслідок чого виникає зусилля, яке обертає ротор (кінетична енергія пари перетворюється на механічну роботу). Залежно від характеру перетворення потенціальної енергії пари на кінетичну розрізняють активні турбіни, реактивні турбіни, а також парові турбіни комбінованого (активно-реактивного) типу. За напрямом руху пари парової турбіни бувають осьові (потік пари рухається вздовж осі турбіни) і радіальні (пара рухається в напрямках, перпендикулярних осі турбіни); за кількістю ступенів - одно- і багатоступеневі. Парові турбіни, що їх використовують для приведення в рух електрогенераторів повітродувок, компресорів, насосів тощо, називають стаціонарними; парові турбіни на суднах і локативах - транспортними. Стаціонарні парові турбіни поділяють на конденсації турбіни, після яких пара з тиском, нижчим від атмосферного, надходить у конденсатор; конденсаційні з відбиранням пари з проміжних ступенів турбіни (відібрану пару використовують для виробничих і теплофікаційних цілей); турбіни з протитиском (відпрацьовану пару цих турбін застосовують для опалення і технологічних цілей); перед увімкнені (турбіни з протитиском, відпрацьовану пару з яких використовують у турбінах з нижчим тиском); турбіни “м'ятої” пари, що в них використовують пару низького тиску, яка надходить від парових молотів, процесів і парових машин. Залежно від початкового тиску пари, що надходить до турбіни, парові турбіни бувають низького тиску (працюють на “м'якій” парі з тиском 1,2-2 ата), середнього (тиск свіжої пари до 40 ата), високого (тиск свіжої пари з 60-120 ата), надвисокого (тиск свіжої пари 140-200 ата) і надкритичного (тиск свіжої пари 240 ата і більше). Регулювання парової турбіни бути дросельним (пару впускають у турбіну через один або два клапани, що відкриваються одночасно); сопловим (пару впускають через два або кілька клапанів, що відкриваються послідовно); обвідним (пару впускають до сопел першого ступеня і, крім того, до однієї або кількох проміжних ступенів). На відміну від парової машини, в парової турбіни немає частин із зворотно-поступальним рухом, внаслідок чого турбіни мають відносно невеликі габарити і вагу; пара в паровій турбіні розширюється не періодично (як у паровій машині), а безперервно, що забезпечує швидкохідність турбін (переважно 1500-3000 обертів ротора за хвилину). Ці особливості, а також використання пари високих параметрів при низькому тиску в конденсаторі (0,03-0,06 ата) дають можливість створювати паротурбінні установки високої і надвисокої потужності. Висока економічність таких установок зумовлюється в основному застосування пари високих параметрів, проміжного перегріву пари, високоефективних профілів лопаток, а також великою одиничною потужністю і регенерацією (підігріванням води, що живить котел, парою, яка відібрана з проміжних ступенів турбіни).


Двигун внутрішнього згоряння


Двигун внутрішнього згоряння - тепловий двигун, в якому хімічна енергія палива, яке згоряє в камері згоряння двигуна, перетворюється в механічну енергію. За призначенням двигуни внутрішнього згоряння поділяються на автотракторні, авіаційні, судові та стаціонарні. Звичайно двигун внутрішнього згоряння - поршневі двигуни.
Двигун внутрішнього згоряння складається з кривошипно-шатунного та газорозподільного механізмів і систем живлення, запалювання (для двигунів низького стиску), охолодження, мащення та регулювання. Для роботи двигуна внутрішнього згоряння застосовують різне паливо: бензин, спирт, дизельне паливо, природний і генераторний гази.
За робочим циклом двигуни внутрішнього згоряння поділяються на двигуни швидкого згоряння (цикл Отто), повільного (цикл Дизеля) та мішаного (цикл Сабате); за видом палива - на газові та двигуни рідкого палива (легкого й важкого); за способом заповнення циліндрів робочою сумішшю - 4- і 2-тактні; за способом утворення пальної суміші - на двигуни з зовнішнім і внутрішнім сумішоутворенням. Двигуни внутрішнього згоряння на компресорні, в яких паливо подається в циліндр крізь форсунку за допомогою стиснутого повітря, і безкомпресорні, де паливо безпосередньо впорскується в циліндр або допоміжну камеру за допомогою паливного насоса і форсунки.
Безкомпресорні двигуни за способом утворення суміші в циліндрі поділяються на двигуни з розділеною камерою згоряння (передкамерні, вихорокамерні та повітрокамерні), в яких на утворення пальної суміші впливає завихрювання, викликане струменем повітря під час стиску впорскуваного палива до 100-130 кг/см2, і двигуни з безпосереднім впорскуванням та розпилюванням палива в циліндрі під тиском 200-1400 кг/см2.
При згорянні палива в двигуні внутрішнього згоряння лише частина його тепла (25-40%) перетворюється в механічну роботу на валу двигуна, решта (60-75%) - це теплові втрати. У двигунах з самозабезпеченням від стиску тепло використовується краще, ніж у двигунах з запалюванням від електричної іскри.
Економічність роботи двигуна внутрішнього згоряння характеризується питомою витратою палива в грамах на одну ефективну кінську силу за годину і становить для бензинових карбюраторних двигунів з електричним запалюванням 220-350 г, а для двигунів з самозапалюванням від стиску - 160-210 г.
Розвиток конструкцій двигунів внутрішнього згоряння характеризуються підвищенням економічності їх роботи, збільшення зносостійкості механізмів і зменшенням ваги
Двигуни внутрішнього згоряння широко застосовують на транспорті (автомобільному, залізничному, водному, повітряному), в нафтовій промисловості, на лісорозробках, малих електростанціях, в сільському господарстві та ін. галузях народного господарства. Потужність сучасних автомобільних і тракторних двигунів коливається від 20 до 300 к. с. з кількістю обертів від 1500 до 5000 за хв. Для приведення в рух гребного гвинта на річкових і морських суднах застосовують дизелі різних конструкцій потужністю від 10 до 27 000 к. с.

   

Газова турбіна


Газова турбіна - тепловий турбінний двигун, в якому енергія газового потоку перетворюється в механічну роботу обертового вала. Основною частиною газової турбіни є ротор. Газову турбіну з'єднують з генератором електричного струму або використовують як привод у транспортних та промислових установах. Газова турбіна широко застосовують в авіації. Крім того, їх застосовують на залізничному, морському та автомобільному транспорті, електростанціях, а також на металургійних, нафтопереробних, хімічних та ін. заводах, де як правило використовують відхідні гази. Газові турбіни можуть працювати на рідкому і газоподібному паливі. Спалювання твердого палива (пилу) поки що здійснення в експериментах газотурбінних установок (1959).
Газовий потік, що обертає ротор газової турбіни, утворюється в наслідок спалювання в камері згоряння, до якої компресором подається стиснення повітря. Компресори, що застосовуються в газотурбінних установках, бувають осьові, відцентрові та гвинтові. Основними елементами газотурбінної установки є компресор, камера згоряння, турбіна. Для підвищення ККД газової турбіни застосовують підігрівання повітря відхідними газами (регенерація), проміжне охолодження при стискуванні повітря в компресорі, послідовне підігрівання в камері згоряння тощо. Газотурбінні установки характеризуються значною мірою компактності, малою питомою вагою, надійністю в роботі, меншими експлуатаційними затратами в порівнянні з іншими двигунами. ККД стаціонарних газових турбін, що працюють на газі температурою 650-700°С, становить 30-32%, транспортних - не нижче 20%. При температурі газу 1200-1500° С ККД досягає 45-55%. Потужність газових турбін становить 25000, 40000 і 50000 кВт. Газові турбіни, в яких спалюють тверде паливо, працюватимуть здебільшого за замкненою схемою і матимуть потужність до 200-300 тис. кВт. Реактивні двигуни - тепловий двигун, де хімічна енергія від згорання палива перетворюється на кінетичну енергію газового струменя, що витікає з реактивного сопла, а сила реакції. Яка утворюється при цьому, безпосередньо використовується як рушійна сила (сила тяги).
Згадки про використання реактивного руху зустрічаються в різних народів. Герон Олександрійський (початок н.е.) подав опис першого реактивного двигуна - реактивної турбіни, що приводилася в рух силою реакції витікаючої пари. За допомогою реактивної сили літали порохові ракети, що їх застосовували в Китаї (10 ст.), а згодом (до кінця 19 ст.) - у багатьох європейських країнах.
У 1849 році російський інженер І.І. Третеський запропонував схему повітряного реактивного двигуна, що в ньому утворювалась реакція струменя повітря або газу. Проектом повітряного реактивного двигуна (1866) російського винахідника М.М. Соковніна передбачалось використання сили реакції попереднього стиснутого повітря. Першу схему літального апарата, що приводиться в рух пороховим реактивним двигуном, склав 1881 М.І. Кибальчин. За розрахунками винахідника, в камеру згоряння двигуна замість пороху, що згорів, повинні були автоматично надходити нові порохові заряди.
У 1903 в праці “Дослідження світових просторів реактивними приладами” К.Е. Ціолковський запропонував новий тип двигунів - рідинний реактивний двигун (на рідкому паливі). Цей двигун мав камеру згоряння, що охолоджувалась складовими частинами палива; реактивне сопло, що розширювалось; паливні насоси тощо. Ґрунтовні роботи в галузі теорії реактивного двигуна були виконані М.Є. Жуковським, який, зокрема, досліджував реакцію струменів рідини, що витікає, та І.В. Мещецьким - з питань руху ракет.
До основних частин найпростішого рідинно-реактивного двигуна належать камера згоряння, що в ній згоряє рідке паливо (суміш рідких пального і окислювача); форсунки, що подають під тиском в камеру згоряння пальне і окислювач; реактивне сопло - труба з отвором, з якої продукти згоряння з великою швидкістю витікають назовні. Під час роботи двигуна тиск газу на бічні стінки камери згоряння взаємно зровноважується, і лише тиск на закриту стінку не буде зрівноважений (внаслідок того, що в протилежній частині камери є отвір). Цей незрівноважений тиск і являє собою реактивну силу - силу тяги, що діє в напрямі, протилежному напряму витікаючого струменя газу, і рухає апарат, на якому встановлено двигун.
Сучасні реактивні двигуни поділяють на ракетні двигуни, що використовують для згоряння пальне і окислювач, які містяться на літальному апараті, і повітряно-реактивні двигуни, де необхідний для згоряння пального кисень надходить з атмосфери. Створено також комбіновані реактивні двигуни, що їх застосовують на літаках спеціального призначення. Перспективними є реактивні двигуни, що працюють на ядерному пальному.
Розрізняють реактивні двигуни порохові, або двигуни твердого палива, і рідинно-реактивні, що працюють на рідкому паливі.
Повітряно-реактивні двигун бувають прямоточні (у вигляді прямоточного каналу), пульсуючі (в них згоряння відбувається спалахами, що чергуються), турбореактивні (з газовою турбіною) і турбогвинтові (з газовою турбіною і повітряним гвинтом).

 

Література:

1. Гельфгат І. М. та ін. Збірник різнорівневих завдань для державної підсумкової атестації з фізики. - Харків: " Гімназія", 2007 - 80с.

2. Генденштейн Л. Е., Ненашев І.Ю. Фізика. 10 клас., підручник для загальноосвітніх навчальних закладів; рівень стандарту. - Харків "Гімназія", 2010. - 272ст.: іл.

3. Гончаренко С.У. Фізика: Підручник для 10 кл. серед. загальоосв.шк. - К.: Освіта, 2002. - 319ст.:іл. (http://uareferats.com/index.php/book/details/339)

4. Гончаренко С.У. Фізика: Підручник для 11 кл. серед. загальоосв.шк. - К.: Освіта, 2002. - 319ст.:іл.

5. Коршак Є. В., Ляшенко О.І., Савченко В.Ф. Фізика: 10 клас. ., підручник для загальноосвітніх навчальних закладів; рівень стандарту. - К.: Генеза, 2010. - 192с.( http://4book.org/uchebniki-ukraina/10-klass/499-fizika-10-klas-korshak)

6. Коршак Є. В., Ляшенко О.І., Савченко В.Ф. Фізика: 11 клас. ., підручник для загальноосвітніх навчальних закладів; рівень стандарту. - К.: Генеза, 2011. - 256с.( http://4book.org/uchebniki-ukraina/11-klass/656-fizika-11-klas-korshak)

7. Методичні вказівки до виконання практичних ( лабораторних) робіт: для студентів перших курсів ЧКДЕ. - Чернівці 2014

8. Фізика: Навч. посібник для студентів перших курсів ЧКДЕ. - Чернівці 2014

9. http:// schoolbooks.org.ua/fizika

10. http:// elib.uagate.com/?q=taxonomy/term/24