Эритроциты – это высокоспециализированные клетки, строение которых подчинено выполнению их главной функции - транспорту кислорода.

Функции эритроцитов:

  • транспортная:транспорт газов (кислорода и углекислого газа);

эритроциты также переносят на своей поверхности в адсорбированном состоянии другие вещества;

  • антигенная: в наружную мембрану эритроцитов встроены разнообразные белки и полисахаридно-аминокислотные комплексы, которые определяют специфические антигенные свойства этих клеток крови.

Эритроциты имеют форму двояковогнутого диска, средний диаметр которых около 7 – 7,5 мкм.

Не имеют ядра. Благодаря особой форме эритроциты имеет большую относительную площадь поверхности. Общая площадь поверхности эритроцитов взрослого человека составляет около 3800 кв. м, т.е. в 1500 раз превышает площадь поверхности тела.

Образуются эритроциты в красном костном мозгу из ядерных клеток - предшественниц, которые теряют ядро перед выходом в кровеносное русло.

Продолжительность жизни эритроцитов примерно 120 суток.

Отжившие эритроциты разрушаются в селезенке и печени.

Эритроциты практически не содержат клеточных органоидов, все внутреннее содержимое заполнено гемоглобином.

Каждый эритроцит содержит около 400 млн. молекул гемоглобина.

Гемоглобин – это дыхательный пигмент красного цвета, с химической точки зрения является сложным белком. Молекула гемоглобина состоит из четырех субъединиц. Каждая субъединица включает белковую часть – глобини небелковую часть - гем.

В составе гема имеется один атом двухвалентного железа, поэтому вся молекула содержит четыре атома железа. Благодаря атому железа происходит соединение гемоглобина с различными веществами, и прежде всего с кислородом.

Существует несколько видов гемоглобина:

  • оксигемоглобин– окисленный гемоглобин, связанный с кислородом; это нестойкое соединение, имеет яркий алый цвет; образуется в легочных капиллярах
  • карбогемоглобин -гемоглобин, связанный с углекислым газом; имеет темно-вишневый цвет; образуется в капиллярах тканей; в виде карбогемоглобина транспортируется около 4% СО2 , а остальное количество этого газа переносится в растворенном виде плазмой крови как ионы НСО3
  • миоглобин – дыхательный пигмент, находящийся в мышцах; по своей структуре очень близок к гемоглобину; миоглобин способен связывать гораздо большее количество кислорода и поэтому выполняет депонирующую функцию (запас кислорода в мышцах).

 

карбоксигемоглобин– патологический гемоглобин, связанный с окисью углерода; гемоглобин имеет химическое сродство к угарному газу выше, чем к кислороду; эта форма гемоглобина - очень прочное, слабо диссоциирующее соединение, поэтому отравление угарным газом очень опасно; при концентрации СО, равной 0,1 % во вдыхаемом воздухе, 80% гемоглобина связываются с этим газом, у человека наступает тяжелое отравление в результате кислородного голодания; это состояние сопровождается рвотой, головной болью, потерей сознания; первой помощью при таких отравлениях является искусственное дыхание чистым кислородом или свежим воздухом; при концентрации СО во вдыхаемом воздухе 1% через несколько минут наступает смерть человека; в нормальных условиях около 1% общего количества гемоглобина приходится на карбоксигемоглобин, а у курильщиков – от 3 до 10%

метгемоглобин – патологический гемоглобин, соединенный с различными веществами-сильными окислителями (атомы тяжелых металлов, анилин, бензол и др.); имеет коричневый цвет; чаще образуется у людей, занятых на вредных химических производствах, а также при чрезмерном употреблении лекарств, обладающих окислительными свойствами; при этом железо гемоглобина становится трехвалентным и очень прочно удерживает кислород

патологические формы гемоглобина , возникающие как наследственные заболевания в результате мутаций в генах, кодирующих белок гемоглобина; пример – наследственное заболевание серповидноклеточная анемия, распространенное у людей африканской расы

 

Количество гемоглобина в 1 литре крови взрослого человека в норме:

у женщин 127 – 147 граммов

у мужчин 135 – 160 граммов.

В крови взрослого человека с массой тела 65 кг общее количество гемоглобина около 600 граммов.. Это его количество может связать при полном насыщении около 800 мл кислорода. Снижение количества эритроцитов и гемоглобина ведет к развитию малокровия, или анемии.

Молодые эритроциты человека содержат ядро, которое они теряют перед выходом в кровяное русло из органов кроветворения (красного костного мозга). В результате в них может содержаться больше гемоглобина и они могут приобрести двояковогнутую форму.

 

В клинической практике используют показатель скорость оседания эритроцитов (СОЭ).В крови, помещенной в стеклянный капилляр, эритроциты под действием силы тяжести оседают вниз. Высота столбика плазмы в верхней части капилляра, образовавшегося в течение часа, измеряется в миллиметрах. Это и есть величина СОЭ. В норме этот показатель равен 5 – 9 мм у мужчин и 8 – 10 мм у женщин. Увеличение показателя наблюдается при интенсивной физической нагрузке, во время беременности и может свидетельствовать о протекающем в организме патологическом процессе.

 

Лейкоциты

Лейкоциты, проходящие сквозь стенку кровеносного капилляра. эритроциты 2. лейкоциты.

Лейкоциты – это группа белых (бесцветных) кровяных клеток. Все лейкоциты имеют крупное ядро. Общее количество лейкоцитов в 1 мм3 крови человека в норме около 4000 – 8000.

Количество лейкоцитов колеблется в течение суток и во многом зависит от функционального состояния человека. Увеличение количества лейкоцитов сверх нормы называется лейкоцитоз,а уменьшение - лейкопения.Лейкоцитоз обычно наблюдается при инфекционных заболеваниях, лейкопения - при некоторых воспалительных процессах.

Все лейкоциты способны к амебоидному движению за счет образования ложноножек, благодаря которым могут передвигаться против направления движения крови и выходить за пределы сосудов.

Основной функцией лейкоцитов является осуществление иммунных реакций организма: они разрушают различные генетически чужеродные агенты, попадающие в организм, а также разрушают собственные отмершие или измененные клетки.

Защитная функция лейкоцитов осуществляется путем фагоцитозаи выработкой антител.

Лейкоциты – это сборная группа бесцветных клеток крови, которые отличаются друг от друга строением и формой ядра, размерами клеток, характером цитоплазмы и конкретными функциями. По особенностям цитоплазмы все лейкоциты подразделяются:

  • Зернистые (гранулоциты)
    • базофилы (0 – 1%)
    • нейтрофилы (50 – 75 %)
    • эозинофилы (1 – 5 %)
  • Незернистые (агранулоциты)
    • моноциты (2 – 10 %)
    • лимфоциты (20 – 24 %)

Процентное соотношение лейкоцитов каждой группы называетсялейкоцитарной формулой. Самыми многочисленными являются нейтрофилы, самыми крупными - моноциты.

Лимфоциты – особая группа лейкоцитов, которые вырабатывают иммуноглобулины - антитела.

Лейкоциты вырабатываются в красном костном мозгу из стволовых лимфоидных клеток.

Продолжительность жизни лейкоцитов в среднем от нескольких суток до нескольких десятков суток. Более 50 % всех лейкоцитов находятся за пределами сосудистого русла – в различных тканях.

Тромбоциты

Тромбоциты, или кровяные пластинки это плоские мелкие клетки неправильной округлой формы диаметром 1 – 4 мкм, не имеют ядра.

Образуются в красном костном мозге.

Продолжительность жизни тромбоцитов от 5 до 11 суток.

Количество этих клеток в 1 мм3 составляет

200 000 – 400 000.

Функции тромбоцитов:

  • способность к фагоцитозу инородных тел, в том числе вирусов
  • выработка биологически активных веществ – серотонина и гистамина
  • выработка веществ, участвующих в свертывании крови.

Снижение количества тромбоцитов ведет к снижению свертываемости крови.

Тромбоциты, прилипшие к стенке аорты

в зоне повреждения эндотелиального слоя


Свертывание крови

Свертывание крови – это защитный механизм, предотвращающий потерю крови при ранениях кровеносных сосудов. Процесс свертывания заключается в последовательной цепи биохимических превращений белков плазмы. По современным представлениям существует не менее 12 веществ-факторов свертывания.

Основная последовательность процессов свертывания следующая:

  1. тромбоциты разрушаются при контакте с неровными краями раны сосуда, и при этом из разрушившихся клеток выделяется активный фермент тромбопластин
  2. тромбопластин взаимодействует с неактивным белком плазмы протромбином, и последний переходит в активное состояние - фермент тромбин
  3. тромбин действует на растворимый белок плазмы фибриногени переводит его в нерастворимый белокфибрин
  4. фибрин выпадает в виде белых тонких нитей, которые натягиваются в области раны в виде сеточки
  5. в нитях фибрина оседают эритроциты, лейкоциты, формируется полужидкий кровяной сгусток
  6. нити фибрина сокращаются, отжимают жидкую часть из сгустка, и формируется тромб.

На всех этапах свертывания крови обязательно должны присутствовать ионы кальция и витамин К. Время свертывания крови у человека составляет 5 -12 минут. Недостаток какого-либо фактора свертывания приводит к снижению свертывания.

В крови человека кроме свертывающей системы имеется комплекс веществ противосвертывающей системы (например, гепарин), благодаря которой в норме в нераненном сосуде кровь не свертывается.

 

Переливание крови и группы крови

Переливание крови - это введение определенного количества донорской крови в кровь реципиента. Эта процедура является необходимой при различных тяжелых состояниях человека: при больших кровопотерях, некоторых инфекционных заболеваниях и т.д. Человек, дающий кровь для переливания, называетсядонором,человек, принимающий донорскую кровь, называется реципиентом.

Попытки переливания крови от здоровых людей к больным предпринимались с XVII века. Далеко не все попытки были успешными. Первое в истории медицины внутривенное переливание крови было осуществлено во Франции врачом Ж. Дени. Больному обескровленному юноше перелили кровь ягненка. Юноша тяжело перенес операцию, но выздоровел. В 1819 году в Англии было проведено переливание крови от человека к человеку. В России первое переливание было произведено петербургским врачом Вольфом, и оно было блистательным: умиравшая женщина была спасена. Однако успехи чередовались со случаями тяжелых исходов вплоть до смерти. В настоящее время абсолютно очевидно, что неуспех переливания связан с несовместимостью групп крови. В настоящее время у человека установлено 15 систем групп крови: АВО, Rh , MN , Ss , Pp , Даффи, Льюис, Кидд, Люттеран и другие.

Понятие о группах крови возникло в 1901 году благодаря работам австрийского иммунолога Карла Ландштайнера. Он установил наличие специфических белков в плазме и в мембране эритроцитов. В результате этих исследований были выявлены три группы крови, а в 1907 году чешский ученый Ян Янский открыл четвертую группу.

 

Эти группы составили систему крови, названную АВ0.

В мембране эритроцитов могут находиться два специфических белка –агглютиногены А и В,а в плазме крови – специфические белки - агглютинины αи β.

Для каждой из групп по системе АВ0 имеется определенное сочетание этих белков по два из четырех:

Группа крови Агглютиногены (в мембранах эритроцитов) Агглютинины (в плазме крови)
I ( 0 ) (первая, или нулевая) - α , β
II (A) (вторая) A β
III (B) (третья) B α
IV (AB) (четвертая) AB -

 

При переливании донорской крови реципиенту может наблюдаться несовместимость групп в результате реакцииагглютинации,т.е. склеивания эритроцитов донора агглютининами плазмы реципиента. При этом агглютиноген А взаимодействует с агглютинином α , а агглютиноген В взаимодействует с агглютинином β .

Механизм реакции агглютинации лежит в основе совместимости групп крови: люди с I группой являются универсальными донорами, а люди с IV группой являются универсальными реципиентами. Однако в клинической практике переливание крови осуществляется только группа в группу.

Схема совместимости групп крови. Стрелки указывают, направление группы донорской крови к группе реципиента.

Кроме системы АВО в настоящее время выделяют еще несколько групп крови в зависимости от наличия или отсутствия определенных белков в плазме и мембранах эритроцитов.

Одной из них является система резус.Выделение этой системы состоялось в начале 40-х годов ХХ века в результате работ Ландштайнера и Винера. Был установлен особый белок в мембране эритроцитов вначале у макак резус, затем этот белок был обнаружен и у человека.

В отношении этой системы групп крови выделяют двегруппы: Rh+иRh- .

Rh+ людей среди населенияЗемли около 85% и 15 % Rh- .

В отдельных случаях при попадании донорской крови Rh+ к человеку с Rh- кровью наблюдается резус-конфликт: в крови Rh- человека накапливаются антитела к резус-белку донорской крови, и развивается реакция агглютинации. Эта реакция усугубляется с повторным переливанием донорской Rh + крови и может привести к гибели реципиента.

Этот конфликт может быть особенно обостренным при вынашивании Rh+ плода Rh- матерью: в крови матери в течение беременности накапливаются антитела против белка резус, которые через плаценту проникают в кровь плода и вызывают склеивание и разрушение его эритроцитов.Это может привести к развитию гемолитической желтухи у плода, нарушению развития нервной системы и даже гибели плода.

Кровь каждого человека уникальна и неповторима по всему комплексу антигенов (агглютиногенов), определяющих группу крови по разным системам. Например, агглютиногены девяти систем крови, указанных выше, в разных комбинациях составляют до 200 вариантов групп крови. Кроме того, установлено, что агглютиноген Аимеет около десяти разновидностей, агглютиноген В – восемь разновидностей и агглютиноген Rh – тридцать три разновидности! Только в группе АВ уже известно 12 подгрупп. Вот почему в клинической практике при переливании крови, чтобы максимально уменьшить риск возникновения реакции агглютинации, осуществляют переливание только одногруппной крови (обязательно с учетом систем АВ0 и Rh).

 

При практическом переливании крови соблюдают следующие правила:

  • учитывают совместимость группы крови донора и реципиента по системе АВ0;
  • учитывают резус – совместимость;
  • проводят пробу на индивидуальную совместимость (проба на редко встречающиеся группы крови);
  • проводят биологическую пробу (50 мл донорской крови переливают струйно и контролируют состояние реципиента).

Определение группы кровидонора и реципиента очень важно в клинической практике при проведении переливания крови. Для определения группы по системе АВ0 используют стандартные кровяные сыворотки I , II и III групп, которые содержат соответственно агглютинины α β , β , α . В каплю каждой стандартной сыворотки добавляют по капле исследуемой крови, перемешивают чистой палочкой (отдельной для каждой капли) и через некоторое время отмечают наличие или отсутствие реакции агглютинации. Если в какой-либо капле сыворотки произошла агглютинация (эритроциты склеились в комочки), следовательно донорские эритроциты содержали агглютиногены, «одноименные» с агглютининами сыворотки (А - α ,В - β ).

 

Подобным способом определяют резус – группу, используя при этом стандартную сыворотку, содержащую антитела (агглютинины) к резус – агглютиногенам донорских эритроцитов. Если в капле стандартной сыворотки, в которую добавлена капля исследуемой крови произошла агглютинация, следовательно, донорская кровь Rh –положительна, если агглютинация не произошла, то исследуемая кровь Rh – отрицательна.

Рис. 44. Определение групп крови человека по системе АВ0.Группы, к которым принадлежат стандартные сыворотки, отмечены римскими цифрами. 1 - агглютинация не произошла ни в одной сыворотке, следовательно, исследуемая кровь I группы;   2 – агглютинация произошла в сыворотке I и III групп, следовательно, исследуемая кровь II группы;   3 – агглютинация произошла в сыворотке I и II групп, следовательно, исследуемая кровь III группы;   4 – агглютинация произошла в сыворотках I , II и III групп, следовательно, исследуемая кровь IV группы.