Цифровое трансформирование снимков
Трансформированием снимков в фотограмметрии называют процесс преобразования исходного снимка объекта в изображение объекта в заданной проекции.
При цифровом трансформировании исходный снимок представляет собой цифровое изображение, получаемое или непосредственно цифровой съемочной системой или путем преобразования аналогового снимка в цифровую форму на сканере.
При создании и обновлении карт различного назначения по аэрокосмическим снимкам создаются трансформированные изображения местности в проекции карты. Эти изображения могут быть созданы по одиночным снимкам или по нескольким перекрывающимся снимкам. Цифровое трансформирование выполняется с точностью, соответствующей точности предъявляемой действующими нормативными документами к точности карт соответствующего масштаба.
Цифровые трансформированные изображения используют для создания контурной части карт, путем векторизации цифровых изображений в среде CAD или ГИС, а также как самостоятельные картографические документы. В частном случае, если при трансформировании снимков не учитывается влияние кривизны Земли и проекции карты на положение контуров, трансформированное изображение представляет собой ортогональную проекцию местности на горизонтальную плоскость. Такой вид трансформирования называется ортофототрансформированием.
Рассмотрим процесс цифрового трансформирования исходного снимка на примере его преобразования в цифровое трансформированное изображение, представляющее собой ортогональную проекцию местности на горизонтальную плоскость (ортофотоснимок).
Принципиальная схема этого процесса представлена на рис.2.6.
В результате цифрового трансформирования исходный снимок преобразуется в цифровое изображение местности, представляющее собой ортогональную проекцию местности на горизонтальную плоскость.
Принципиальная схема цифрового трансформирования снимков.
Рис.2.6
Исходными материалами при цифровом трансформировании снимков служат:
- цифровое изображение исходного фотоснимка;
- цифровая модель рельефа (ЦМР)
- значение элементов внутреннего и внешнего ориентирования снимков;
- значение параметров внутреннего ориентирования снимка в системе координат цифрового изображения.
В большинстве случаев при трансформировании снимков используется цифровая модель местности в виде матрицы высот, представляющей собой регулярную сетку квадратов на местности, стороны которых параллельны осям X и Y системы координат объекта 0XYZ. Координаты и высоты узлов сетки квадратов определены в системе координат объекта.
Для формирования ЦМР в виде матрицы высот, в большинстве случаев, используют цифровые модели рельефа, созданные в результате стереофотограмметрической обработки снимков или по уже существующим топографическим картам.
Наиболее распространённым методом построения цифровых моделей рельефа местности является, в настоящее время, метод триангуляции Делоне, в котором рельеф местности представлен в виде пространственной сети треугольников, координаты и высоты вершин которых определены в системе координат объекта. Рельеф местности в пределах треугольника в этом виде ЦМР, аппроксимируется плоскостью, проведённый через его вершины.
При формировании ЦМР этим методом по высотным пикетам треугольники генерируются под условием, чтобы в окружность, проведенную через вершины треугольников, не должны попадать вершины других треугольников.
По цифровой модели рельефа в виде триангуляции Делоне можно сформировать ЦМР в виде матрицы высот.
рис.2.7
Для определения высоты узла i матрицы высот, по координатам xi и yi этого узла в системе координат объекта находят вершины треугольника триангуляции Делоне, в котором находится узел I (рис.2.7).
Значение высоты узла i определяют по формуле:
Zi = A + BXi + CYi (2.44)
Выражение (_2.1) представляет собой уравнение плоскости проведенной через вершины треугольника, внутри которого находится узел i.
Коэффициенты уравнения (_1.1) A, B и C получают в результате решения системы из трёх уравнений
A + BX + CY ─ Z = 0 ,
составленных по значениям координат X, Y и высот Z каждой из вершин треугольника.
Цифровое трансформирование снимка выполняется следующим образом.
Сначала формируется прямоугольная матрица цифрового трансформированного изображения, строки и столбцы которой параллельны осям X и Y системы координат объекта, а координаты одного из углов матрицы заданы в этой же системе координат. Размер элементов (пикселей) матрицы обычно выбирают приблизительно равной величине D×m, в которой:
- D - размер пикселя цифрового изображения исходного снимка;
- m - знаменатель среднего масштаба снимка.
Значения координат начала системы координат создаваемой матрицы, выбирают кратными величине элементов матрицы.
Для формирования цифрового трансформированного изображения, каждому элементу цифрового изображения a*ij необходимо присвоить оптическую плотность или цвет изображения соответствующего участка объекта на исходном цифровом снимке. Эта операция выполняется следующим образом. По значениям индексов i и j элементов матрицы a*ij определяются координаты X, Y центра соответствующего пикселя цифрового трансформированного изображения в системе координат объекта.
По координатам Xi, Yi точки объекта, соответствующей центру пикселя, по цифровой модели рельефа определяется высота этой точки Zi.
Определение значения Zi по ЦМР в виде матрицы высот выполняется методом билинейного интерполирования (рис.2.8).
Рис.2.8
На рис.2.8 D X = Xi - X1, а DY= Yi - Y1, где X1 и Y1 - координаты узла 1 цифровой модели рельефа.
Высота точки Zi вычисляется по формуле:
, (2.45)
в которой:
.
По координатам Xi, Yi, Zi и значениям элементов внутреннего и внешнего ориентирования снимка вычисляются координаты х,у соответствующей точки на исходном цифровом снимке в системе координат снимка Sхуz.
Вычисления производятся по формулам:
, (2.46)
в которых
.
По координатам х,у и значениям параметров внутреннего ориентирования цифрового изображения определяют координаты точки снимка в системе координат цифрового изображения осхсус.
В случае использования аффинных преобразований при выполнении внутреннего ориентирования, определение координат выполняется по формулам:
Затем по координатам хС и уС вычисляются пиксельные координаты точки
.
По значениям пиксельных координат xp,yp точки цифрового изображения снимка, которая является проекцией центра пикселя матрицы цифрового трансформированного изображения, находят ближайшие к этой точке четыре пикселя цифрового изображения снимка. А затем, методом билинейной интерполяции, по формуле
,
в которой:
определяют значение оптической плотности Di или цвета соответствующего пикселя матрицы цифрового трансформированного изображения. При этом значение величин Dхp,Dyp вычисляют по формулам:
.
Таким же образом определяются оптические плотности или цвет всех остальных пикселей цифрового трансформированного изображения.
Помимо метода билинейной интерполяции для формирования цифрового трансформированного изображения применяют метод “ближайшего соседа”, в котором по пиксельным координатам xp,yp находят пиксель цифрового изображения снимка, на который проектируется точка, соответствующая центру пикселя цифрового трансформированного изображения, и значение его оптической плотности или цвета присваивается пикселю цифрового трансформированного изображения.
Метод “ближайшего соседа” позволяет сократить время формирования цифрового трансформированного изображения по сравнению с методом билинейной интерполяции, однако изобразительные свойства формируемого цифрового изображения при этом ухудшаются.
Если превышения точек на участке местности, изображенной на снимке, незначительны, при создании цифрового трансформированного изображения значения высот точек местности, соответствующих центрам пикселей трансформированного изображения, принимаются равными среднему значению высоты участка местности.
В этом случае, нет необходимости в создании цифровой модели рельефа местности, так как трансформированное цифровое изображение представляет собой центральную проекцию исходного снимка на горизонтальную плоскость, расположенную на высоте Z, равной среднему значению высоты участка местности. Такой метод трансформирования допустим в случае, если ошибки в положении точек на трансформированном изображении, вызываемые рельефом местности, не превышают допустимых значений.
Величины максимально допустимых значений превышений точек местности – h max относительно средней плоскости, при которых ошибки в положении точек на трансформированном изображении не будут превышать установленного допуска DR max , можно определить по формуле:
h max = , ( 2 . 47 )
в которой :
f – фокусное расстояние съёмочной камеры;
r – расстояние на исходном снимке от главной точки до точки на снимке.
Как следует из формулы (2.47), величина ошибки, DRmax прямо пропорционально значению r. Поэтому при определении hmax измеряется значение r до наиболее удаленной от главной точки снимка точки, участвующей в формировании трансформированного изображения.
Аналогичным образом можно определить величину допустимой ошибки Dhmax определения высот точек местности, соответствующих центрам пикселей трансформированного изображения, по цифровой модели рельефа.
Dhmax = DRmax . (2.48)
В случае, если трансформирование снимков выполняется с целью создания или обновления карт и планов значение DRmax выбирается равной величине 0,2 мм на карте или плане. То есть
DRmax = 0.2мм · M ,
где М – знаменатель масштаба создаваемой карты.
При создании цифровых трансформированных изображений местности в проекции карты, плановые координаты узлов цифровой модели рельефа определяют в системе координат карты. В России топографические карты создаются в проекции Гаусса - Крюгера в государственных системах координат СК 42, СК 63 и СК 95.
Высоты узлов цифровой модели рельефа задают равными геодезическим высотам H этих узлов относительно поверхности референц – эллипсоида.
По значениям координат узлов x, y в государственной системе координат вычисляют значения геодезической широты В и долготы L узлов цифровой модели рельефа, а затем по величинам B, L и H, координаты узлов Xгц, Yгц и Zгц в геоцентрической системе координат.
Эти преобразования подробно изложены в курсах высшей геодезии и математической картографии.
В остальном, процесс цифрового трансформирования аналогичен процессу создания цифрового ортофотоизображения. Необходимо только отметить, что элементы внешнего ориентирования снимка, в этом случае, должны быть определены в геоцентрической системе координат.
Вместо геоцентрической системы координат можно использовать топоцентрическую систему координат Oтц Xтц Yтц Zтц. Начало топоцентрической системы координат обычно выбирают в середине обрабатываемого участка местности. Ось Xтц топоцентрической системы координат лежит в плоскости меридиана, проходящего через начало системы координат. Ось Zтц совпадает с нормалью к поверхности референц –эллипсоида в начале системы координат, а ось Yтц дополняет систему до правой. При использовании топоцентрической системы координат, элементы внешнего ориентирования исходного снимка должны быть определены в этой системе координат.
В случае, если объект изображен на перекрывающихся между собой снимках, по этим снимкам создают единое цифровое трансформированное изображение, которое называют цифровым фотопланом.
Цифровые фотопланы в современных цифровых фотограмметрических системах создают непосредственно в результате трансформирования всех перекрывающихся исходных снимков.
На рис.2.9 иллюстрируется процесс формирования цифрового фотоплана этим методом.
исходные цифровые снимки
цифровой фотоплан
Рис.2.9
В рассматриваемом методе на перекрывающихся цифровых изображениях снимков проводят линии пореза, которые представляют собой полилинии. По координатам узлов полилинии в системе координат цифрового снимка определяют координаты проекций узлов полилинии на цифровом фотоплане в системе координат объекта и формируют полилинии на цифровом фотоплане.
По этим полилиниям определяют граничные пиксели, которые формируют границы участков цифрового фотоплана, создание которых будет производиться по соответствующим цифровым изображениям снимков.
Формирование цифрового фотоплана в пределах каждого из этих участков производится аналогично процессу формирования цифрового ортофотоснимка.
Определение координат X,Y узлов полилинии в системе координат цифрового фотоплана по значениям координат xc, yc их изображений в системе координат цифрового изображения снимка производится методом приближений следующим образом.
По координатам xc, yc изображения узла вычисляются координаты x, y изображения узла в системе координат снимка.
В случае если при внутреннем ориентировании цифрового снимка использовались аффинные преобразования, эти вычисления производятся по формулам:
.
Затем вычисляются значения координат X, Y узла в системе координат цифрового фотоплана по формулам:
, (2.49)
в которых
В первом приближении значение высоты узла принимают равной среднему значению высот точек цифровой модели рельефа Z1.
По вычисленным значениям X1,Y1 по цифровой модели рельефа методом билинейной интерполяции определяют уточненное значение высоты узла Z2, по которому по формулам (2.49) определяют уточненное значение координат узла X2,Y2. По координатам X2, Y2 узла, в свою очередь, определяют новое значение высоты узла Z3.
Вычисление продолжают до тех пор, пока разность значений координат X и Y узла в приближениях не будут превышать установленного допуска.
Процесс определения координат X,Y узлов полилинии методом приближений представлен на рис.2.10.
Рис.2.10
Созданные в результате цифрового трансформирования снимков цифровые изображения местности по точности должны соответствовать требованиям, предъявляемым к их точности нормативными документами Роскартографии, если фотопланы предназначены для создания кадастровых и топографических карт (планов) или технического задания на производство работ, если фотопланы создаются для решения других задач.
Контроль созданных трансформированных фотоснимков и фотопланов проводят по расхождениям значений координат контрольных точек, измеренных непосредственно на цифровом плане и координат этих точек, определенных в результате геодезических измерений или в результате построения сети пространственной фототриангуляции.
В качестве контрольных точек выбираются только точки, расположенные непосредственно на земной поверхности, так как изображения объектов местности возвышающихся над ней (крыши домов, мосты и т.п.) имеют на фотопланах искажения.
Контроль фотопланов производится также по расхождениям одноименных контуров расположенных на линии пореза (граничной линии) смежных трансформированных фотоснимков.
В случае если трансформированные фотоснимки и фотопланы создавались для создания топографических и кадастровых карт (планов), расхождения в плане положения контрольных точек не должны превышать величины 0.5 мм в масштабе создаваемой карты (плана), а расхождения одноименных контуров на граничной линии величины 0.7 мм.
При цифровом трансформировании снимков, с целью контроля точности определения элементов ориентирования исходных снимков и точности построения цифровой модели рельефа местности, перед выполнением процесса формирования цифровых трансформированных изображений производят априорную оценку их точности.
Априорная оценка точности производится по контрольным точкам, путем сравнения значений их плановых координат, определенных в результате геодезических или фотограмметрических определений и значений координат расчетного положения изображения контрольной точки на трансформированном изображении.
Определение плановых координат расчетного положения изображения контрольной точки производится по значениям координат изображений контрольных точек на исходных снимках, значениям элементов внутреннего и внешнего ориентирования снимков, параметрам внутреннего ориентирования снимка в системе координат цифрового изображения с использованием цифровой модели рельефа. При этом используется алгоритм, аналогичный алгоритму определения координат углов граничной линии на фотоплане.
При определении координат в качестве начального приближения, используется высота контрольной точки, значение которой было определено в результате геодезических или фотограмметрических определений.
Проведение априорной оценки точности позволяет проконтролировать качество фотограмметрических работ, выполняемых для обеспечения процесса цифрового трансформирования и при необходимости повторить эти процессы.
3. Технология фотограмметрической обработки данных аэрокосмической съемки с целью получения цифровых моделей рельефа местности и ортофотопланов.
3.1 Подготовка необходимых материалов и исходных данных.
Подготовка исходных материалов для выполнения работ заключается в их изготовлении, подборе, проверке комплектности.
Исходными для фотограмметрической обработки являются следующие материалы:
- исходные негативы и диапозитивы на стекле или малодеформирующейся фотопленке (если это предусматривается технологией работ);
- контактные отпечатки на фотобумаге или увеличенные отпечатки в масштабе, близком к масштабу создаваемой карты ;
- каталоги координат и высот пунктов государственной геодезической сети, геодезических сетей сгущения и точек съемочной сети, полученных геодезическими методами составляемые по номенклатурным листам. На каждую опорную точку в исходных материалах должны присутствовать абрис и описание. Координаты всех опорных точек должны быть заданы в той системе координат (СК-42, СК-95 или в местной системе), в которой составляется или обновляется карта (план). В противном случае выполняется преобразование координат в нужную систему;
- копия паспорта съемочной камеры со значениями элементов внутреннего ориентирования, эталонных координат или расстояний между координатными метками, сведения о дисторсии объектива и другими константами (для нетрадиционных камер);
- среднее значение высоты фотографирования на участке или среднего масштаба аэроснимков;
- редакционные указания и подлежащие использованию ведомственные материалы картографического назначения, подобранные по трапециям, материалы полевого и камерального дешифрирования, уточненные фотосхемы или снимки, увеличенные до масштаба составляемой карты с подписанными географическими названиями, характеристиками топографических объектов.
Подготовка материалов и исходных данных включает:
а) изготовление диапозитивов, контактных отпечатков на фотобумаге, отпечатков, увеличенных до масштаба плана (для дешифрирования);
б) нанесение на снимки опорных точек;
в) обработку результатов спутниковых или других бортовых определений;
г) сканирование снимков (при использовании цифровых обрабатывающих приборов);
д) перенос цифровой исходной информации (паспортные данные съемочных камер, каталоги координат геодезических точек, цифровые изображения) на машинные носители и размещение их на жестком диске компьютера с помощью и по правилам программных средств, намеченных к использованию при обработке снимков.
Диапозитивы получают с неразрезанных оригинальных негативов контактным способом на проверенном и отъюстированном контактном станке или на электронном копировальном приборе. Диапозитивы изготавливаются форматом 18х18 см, 23х23 см или 30х30 см со всего кадра. Они могут служить в качестве исходного материала для сканирования, а также для выполнения по ним камерального дешифрирования и фотограмметрического сгущения. К фотографическому качеству диапозитивов предъявляются те же требования, что и к исходным негативам.
Диапозитивы делают на стеклянных фотопластинках, рабочая поверхность которых не имеет ощутимых отступлений от плоскости, или на фототехнической плёнке с малодеформируемой полиэтилентерафталатной (лавсановой) основой толщиной не менее 100 мкм.
Контактные отпечатки на фотобумаге с исходных (оригинальных) негативов или увеличенные отпечатки в масштабе, близком к масштабу создаваемой карты , изготавливаются параллельно с изготовлением диапозитивов.
При изготовлении диапозитивов и контактных отпечатков должны соблюдаться требования Руководства по фотографическим работам (ГКИНП-02-190-85).
При выборе опорных точек необходимо учитывать следующие рекомендации:
- в качестве опорных точек для фотограмметрического сгущения следует выбирать хорошо опознающиеся на снимках точки, значения плановых координат и высот которых получены в процессе полевой подготовки снимков или по карте (плану) более крупного масштаба;
- при сплошной подготовке снимков количество выбранных опорных точек для построения модели местности в пределах площади снимка (стереопары) должно быть не менее 5. При этом 4 опорные точки должны размещаться в угловых стандартных зонах, что позволит наиболее точно определить элементы внешнего ориентирования снимка (стереопары).
Местоположение и номера планово-высотных опорных точек оформляются на контактных отпечатках или увеличенных фотоснимках с результатами полевых геодезических работ. Для точек, используемых в качестве опоры, выписываются также их отметки, отнесенные к поверхности земли.
Обработка результатов спутниковых или других бортовых определений.
При фотограмметрической обработке снимков могут использоваться координаты центров проектирования снимков, значения угловых элементов внешнего ориентирования снимков, высот фотографирования и высот центров проектирования над изобарической поверхностью или их функции, определенные в полете.
При использовании данных спутниковых систем следует иметь ввиду, что они отнесены к общим земным эллипсоидам WGS-84 (для GPS) или ПЗ-90 (для ГЛОНАСС). Топографо-геодезические работы в России выполняются в системе координат конформной поперечно-цилиндрической проекции, рассчитанной на референц-эллипсоиде Ф.Н. Красовского (в системе координат СК-42 или СК-95). Из-за различия параметров названных эллипсоидов, а также различий в положении начала систем координат и ориентации их осей возникает необходимость корректировки данных GPS и ГЛОНАСС. Такая корректировка выполняется по указаниям и с помощью программных средств, предназначенных специально для этих целей.
Сканирование фотоснимков.
Сканирование кадровых снимков является важным этапом технологии создания топографических карт и планов с использованием цифровых фотограмметрических приборов и систем, так как от его качества зависят все последующие процессы фотограмметрической обработки цифровых изображений.
Для сканирования следует использоваться фотограмметрические сканеры, имеющие стабильный элемент геометрического разрешения порядка 5-15 мкм и инструментальную погрешность не более 3-5 мкм. Допускается сканирование как негативного фильма, так и диапозитивного изображения, полученного на фотопленке или стеклянной фотопластинке.
Перед сканированием снимков выполняется расчет элемента геометрического разрешения с учетом разрешающей способности исходных материалов.
Фотоснимки сканируются в порядке их планируемой обработки. В пределах маршрута необходимо позаботиться об однообразной закладке диапозитивов или негативов в снимкодержатель сканера, добиваясь как можно точного устранения угла разворота снимка относительно системы координат сканера. Для обеспечения максимально возможно точной передачи геометрии и плотностей исходного изображения периодически должна проводиться геометрическая и радиометрическая калибровка сканера с использованием его штатного программного обеспечения. После сканирования дополнительно выполняется визуальный контроль качества изображения. Проверяется наличие на изображении координатных меток прикладной рамки съемочной камеры.
Подготовка технических средств включает проверку их комплектности, калибровку и тестирование, а также наличия и работоспособности необходимых программных средств.
Подготовка редакционных указаний.
Редакционные указания разрабатывают на основе технического проекта с использованием всех основных и дополнительных материалов и результатов их анализа. В редакционных указаниях даются конкретные предписания и рекомендации по созданию карты в зависимости от особенностей местности и качества исходных материалов. Редакционные указания подготавливаются на основании технических условий и результатов изучения и оценки исходных материалов и утверждаются главным редактором предприятия. Они должны отражать:
- принятую технологию работ;
- перечень нормативно-технических актов, используемых при производстве работ;
- порядок и методику использования геодезических, картографических, съемочных, литературно-справочных и других исходных материалов;
- содержание топографической карты, критерии передачи топографических объектов характеристиками и дополнительными обозначениями и надписями, особенности применения условных знаков, критерии генерализации объектов;
- рекомендации по дешифрированию и отображению объектов местности и элементов рельефа с учетом ландшафта картографируемой местности, генерализации изображения этих элементов на снимке с приложением образцов дешифрирования на наиболее сложные по картографической нагрузке участки, рекомендации по полевому обследованию местности;
- разграфку и компоновку листов карты, включая образцы оформления их оригиналов и рекомендации по выполнению сводок по рамкам;
- согласование содержания карты с картами смежных масштабов;
- состав и оформление материалов, представляемых заказчику и в территориальный архив (банк) геодезических и картографических данных, в том числе по формату данных.
При разработке редакционных указаний особое внимание уделяют трудно дешифрируемым объектам местности, а также не дешифрируемым непосредственно по основным аэроснимкам объектам местности. Для таких объектов перечисляются источники, по которым они могут быть отображены на оригинале.
К редакционным указаниям прилагают схему расположения основных и дополнительных картографических и аэросъемочных и космосъемочных материалов, схему района работ и расположения участков, различающихся по характеру местности, схему сводок по границам района, эталоны дешифрирования и схему их расположения.
На участки местности, содержащие наибольшее число типичных для района работ объектов, перед сбором контуров составляют эталоны дешифрирования. При разработке эталонов дешифрирования используют:
- материалы основных и дополнительных аэро- и космических съемок;
- имеющиеся на данный район топографические карты, масштаб которых равен или близок к масштабу создаваемых топографических карт;
- специальные карты, содержащие изображения и характеристики объектов, которые отсутствуют на снимках и топографических картах и т.д.
К эталонам прилагают описания, содержащие краткие сведения о местности, дату, время и масштаб съемки, перечень изобразившихся и нанесенных объектов с указанием их дешифровочных признаков, неотдешифрированную копию снимка, а также рекомендации по использованию технических средств для дешифрирования данного фрагмента снимка.
Эталоны подготавливают наиболее опытные дешифровщики, изучившие район картографирования по всем имеющимся материалам, в том числе и по материалам на аналогичные ландшафты.
Если исходных материалов, используемых для составления эталонов недостаточно, то проводят выборочное полевое обследование местности.
Подготовка специалистов к выполнению работ должна включать изучение задания, технического проекта, редакционных указаний и обучение инженерно-технического персонала и исполнителей выполнению наиболее сложных операций, которые редко встречались в предыдущей практике или не встречались вообще.
Обработку снимков поручают опытным специалистам, знакомым с районом работ и особенностями аэро- или космических снимков. При необходимости организуют техническую учебу специалистов. Рекомендуется специализировать исполнителей для цифровых фотограмметрических приборов по конкретным операциям (фототриангуляция, сбор информации о рельефе и контурах, изготовление фотопланов и др.). Критериями подготовки специалистов являются острота стереоскопического зрения, способность оценки местности по ее изображениям, степень освоения вычислительной техники.
Особое внимание уделяется подготовке исполнителей к дешифрированию космических снимков. В этом случае изучение редакционных указаний, основных и дополнительных материалов осуществляется комплексно. Рекомендуется следующий порядок работы:
- ознакомление с редакционными указаниями;
- подбор и ознакомление с основными и дополнительными материалами, изучение их характеристик, последовательности и полноты использования;
- изучение географических особенностей района с целью определения типичных природных и искусственных объектов и взаимосвязей между объектами, их количественных и качественных характеристик, климата (сезонных, погодных, суточных, стихийных и др. явлений), прямых и косвенных дешифровочных признаков, перечня не дешифрируемых по основным материалам объектов, перечня объектов, которые лучше дешифрировать по снимкам других сезонов или по каким-либо другим дополнительным материалам;
- изучение эталонов дешифрирования и уяснение порядка их использования;
- уяснение порядка дешифрирования и оформления его результатов.
Особое внимание должно быть обращено на обучение молодых специалистов и специалистов с малым опытом выполнения подобного рода работ. Обучение должно проводиться на тех конкретных устройствах и материалах, которые будут использованы при создании выходной продукции. Качество подготовки специалистов должно проверяться на семинарах и собеседованиях в группах специалистов одного-двух видов работ.
3.2 ПОСТРОЕНИЕ И УРАВНИВАНИЕ ПРОСТРАНСТВЕННЫХ ФОТОГРАММЕТРИЧЕСКИХ СЕТЕЙ
Фотограмметрическое сгущение планового и высотного съемочного обоснования должно выполняться путем построения блочных или маршрутных фотограмметрических сетей. При многомаршрутной, площадной аэросъемке формируются и уравниваются блочные сети.
Для построения маршрутных фотограмметрических сетей необходимо, чтобы фактическое продольное перекрытие снимков было порядка 60%. Для блочных фотограмметрических сетей при таком же продольном перекрытии снимков поперечное перекрытие их должно составлять порядка 30% или более.
Если фотограмметрическое сгущение выполняется с целью определения плановых координат и высот точек местности, то для обработки предпочтение следует отдавать снимкам, полученным широкоугольными и сверх широкоугольными съемочными камерами. При фотограмметрическом сгущении планового обоснования могут использоваться снимки, полученные нормальноугольными съемочными фотокамерами.
В фотограмметрические сети включают:
а) пункты геодезических сетей и точки съемочного обоснования, а также опорные фотограмметрические точки, определяемые при построении фотограмметрических сетей по каркасным маршрутам;
б) основные фотограмметрические точки (в углах моделей), используемые как опорные или контрольные при последующей обработке отдельных моделей или снимков на процессах составления оригинала и трансформирования снимков;
в) ориентировочные точки, по которым осуществляется внешнее ориентирование снимков и создаются отдельные модели, т.е. элементарные звенья сети;
г) связующие точки, лежащие в зоне тройного перекрытия снимков и служащие для соединения соседних элементарных звеньев при формировании маршрутной сети;
д) общие точки, предназначенные для объединения перекрывающихся маршрутных сетей в блок;
е) точки для связи со смежными участками;
ж) точки на урезах вод и наиболее характерные* точки местности, отметки которых должны быть подписаны на карте или плане.
з) закрепленные на местности точки инженерного назначения, координаты которых должны быть определены при фототриангулировании (при съемках в масштабах 1:5000 - 1:500);
и) дополнительные точки, служащие для придания большей жесткости отдельным элементарным звеньям и сети в целом.
Точки для взаимного ориентирования снимков размещают группами по 2-3 в шести стандартных зонах стереопары. Радиус стандартной зоны может составлять порядка 0,1 размера базиса фотографирования в масштабе снимка.
Число связующих точек для соединения моделей в маршрутную сеть должно быть не менее пяти-шести в полосе тройного продольного перекрытия.
Общие точки для соединения маршрутов в блок размещают равномерно по всей полосе поперечного перекрытия. Количество таких точек зависит от ширины полосы, но в любом случае с каждой стороны стереопары следует намечать не меньше 3 точек при 30% поперечном перекрытии и не менее 6 точек при 60% поперечном перекрытии.
Фотограмметрические точки разного назначения должны по возможности совмещаться. Общее число их на стереопару при стандартных продольном и поперечном перекрытиях должно быть не меньше 30 при автоматического отождествления идентичных точек снимков и не меньше 20, если стереоскопические измерения снимков выполняет непосредственно исполнитель, работающий на фотограмметрическом приборе.
При выборе точек следует соблюдать следующие требования:
- выбранная точка должна изображаться на возможно большем числе смежных снимков;
- соседние точки должны располагаться на снимке на расстоянии друг от друга не менее 0,05 его базиса;
- точки в зонах тройного, четвертного и т. д. перекрытий снимков желательно располагать не на одной прямой;
- точка, изобразившаяся на нескольких маршрутах, должна быть включена в фототриангуляционную сеть в каждом из них;
- точки не должны располагаться ближе 10 мм от края снимка.
Точки сети следует выбирать при стереоскопическом рассматривании снимков с увеличением не менее 4-6х. Их размещают на плоских участках и совмещают с надежно отождествляемыми контурами. Не допускается выбор точек на крутых скатах, затененных участках оврагов и лощин; последние определяют только в качестве характерных, если это обусловлено назначением съемки (например, при съемке масштаба 1:2000 для целей мелиорации). При автоматическом отождествлении идентичных точек они должны выбираться с учетом требований программного обеспечения (схожесть на всех перекрывающихся снимках по геометрии, фототону, разности контрастов и др.).
Для измерения координат точек снимков используются цифровые фотограмметрические системы (ЦФС). Порядок измерения точек сети и координатных меток и форматы записи результатов измерений определяются требованиями используемой программы обработки.
Фотограмметрическое сгущение опорной сети с использованием цифровых фотограмметрических систем требует наличия растровых изображений снимков или их фрагментов. Растровое изображение может быть получено как непосредственно в процессе выполнения аэро- или космической съемки цифровыми камерами, так и путем сканирования снимков, полученных традиционными съемочными фотокамерами. В этом случае подбирается величина элемента сканирования (пикселя) снимков, исходя из требуемой точности определения координат точек сгущения.
Для измерения на ЦФС следует применять метод автоматического отождествления точек на смежных снимках. В зависимости от используемого программного обеспечения автоматическое отождествление может выполняться для двух, трех и т.д. (до шести или более) снимков, на которых изображается измеряемая точка.
Обработку стереопар следует вести строго последовательно согласно их расположению в маршрутной схеме. В этом случае уже обработанные стереопары будут защищены от порчи, так как редактирование положения точек будет выполняться всегда только на правом снимке.
В состав исходной информации для программы фототриангуляции кроме паспортных данных съемочной камеры, измеренных на снимках координат точек и координатных меток, а также каталога координат опорных и контрольных точек могут входить:
а) длины и азимуты отрезков, превышения между объектами местности;
б) координаты центров проектирования снимков, определяемые по наблюдениям спутниковых систем ГЛОНАСС илиGPS;
в) значения угловых элементов внешнего ориентирования снимков, высот фотографирования и высот центров проекции над изобарической поверхностью или их функции, определенные в полете.
При условии, что точность координат центров проектирования, выраженная в масштабе снимков, сопоставима с измерительной точностью самих снимков, использование при фототриангулировании таких координат в качестве дополнительной исходной информации позволяет существенно сократить необходимое число опорных точек. На блок среднего размера (10 маршрутов по 15 стереопар) в этом случае необходимо определять не менее пяти планово-высотных опознаков, располагая их по схеме "конверт". При большем размере блока и повышенных требованиях к точности сети количество необходимых опознаков увеличивается. В первую очередь дополнительные опознаки следует располагать в середине сторон блока, а затем - равномерно по площади его.
Исходная информация для уравнивания переносится в компьютерный файл с помощью вспомогательных программных средств, прилагаемых к программе фототриангуляции, или текстовых редакторов. Комплектование материалов для обработки и сама обработка ведутся в соответствии с требованиями руководства по эксплуатации используемой программы.
При одинаковой геометрической схеме блока и сопоставимом качестве снимков используемый программный продукт для построения фототриангуляции должен обеспечивать стабильную (одного порядка) точность сгущения, выраженную в масштабе снимков, независимо от масштаба картографирования, физико-географических условий района работ и условий аэросъемки.
Используемая программа для уравнивания фотограмметрических сетей должна обеспечивать надежное определение пространственных координат точек сети различного размера и конфигурации. Важно, чтобы программа предоставляла возможности интерактивного редактирования исходных данных (включение, исключение, изменение данных).
Уравнивание сети может выполняться на основе либо условий компланарности и масштаба, либо условий коллинеарности проектирующих лучей связок. При правильной организации вычислительного процесса оба вида уравнивания приводят к одинаковым результатам.
В реальных программах фототриангуляционные сети создаются двумя способами:
- посредством совместного уравнивания полной совокупности геодезических, фотограмметрических и других измерений на всю сеть;
- путем предварительного формирования отдельных частей сети (одиночных моделей, триплетов, маршрутных сетей) и последующего объединения таких частей в более крупное построение.
Теоретически первый вариант предпочтительнее и он рекомендуется в качестве основного. На практике, однако, на точность окончательных результатов влияют в большей степени погрешности съемочного обоснования и стереоизмерений, нежели эксплуатационные возможности и алгоритмы различных программ. Поэтому повышения качества продукции следует добиваться, в первую очередь, за счет сокращения погрешностей измерений.
Процесс построения сетей пространственной фототриангуляции должен контролироваться путем анализа значений и распределения погрешностей измеренных величин и их функций, выявленных на всех этапах построения и уравнивания:
- внутреннего ориентирования снимков;
- взаимного ориентирования снимков;
- построения маршрутных сетей;
- соединения смежных маршрутов;
- построения блочных сетей.
Критерием точности служат значения максимальных и средних погрешностей измеренных и определяемых величин. Для выявления грубых погрешностей на каждом этапе построения сети следует руководствоваться не только ее значением на точке, но и положением этой точки на снимке и положением в сети относительно других точек.
На стадии внутреннего ориентирования снимков величина коэффициентов деформации должна отличаться от единицы не более чем на несколько единиц четвертого после десятичной точки знака, а их разность по осям Х и У не должна превышать нескольких единиц пятого знака. Если эта разность больше, следует искать причину и устранить ее влияние.
На стадии взаимного ориентирования снимков среднее значение остаточных поперечных параллаксов не должно превышать 7 мкм. На стадии построения свободной маршрутной сети средние квадратические расхождения координат связующих точек, вычисленные в смежных стереопарах не должны превышать в плане 15 мкм, а по высоте - 15 мкм, умноженных на отношение фокусного расстояния фотокамеры к базису фотографирования на снимке. Средние квадратические значения остаточных погрешностей условий компланарности на точках снимков в свободной маршрутной сети также не должны превышать 10 мкм.
Средние погрешности переноса общих точек с маршрута на маршрут, выявленные при уравнивании свободного фототриангуляционного блока, не должны превышать 40 мкм при использовании цифровой идентификации общих точек.
Качество сетей, уравненных по опорным данным, оценивается по следующим критериям:
а) по остаточным расхождениям фотограмметрических и геодезических координат на опорных точках;
б) по расхождениям фотограмметрических и геодезических координат контрольных геодезических точек, не использованных при уравнивании сетей;
в) по разности бортовых данных и фотограмметрических значений соответствующих величин;
г) по остаточным погрешностям условий компланарности.
Для каркасных маршрутов остаточные средние погрешности высот на опорных геодезических точках после внешнего ориентирования не должны превышать 0,15 высоты сечения рельефа, а погрешности плановых координат 0,15 мм в масштабе карты. Средние расхождения между фотограмметрическими высотами контрольных точек и их геодезическими отметками не должны быть более 1/5 высоты сечения рельефа, а расхождения в плане - 0,25 мм в масштабе карты . Число предельных расхождений, равных удвоенным средним, не должно быть более 5 %. При соблюдении указанных допусков данные из каркасного маршрута могут использоваться для уравнивания заполняющей фотограмметрической сети. Точки с большими расхождениями плановых координат или высот исключают.
Остаточные средние расхождения высот на опорных геодезических точках после внешнего ориентирования маршрутной или блочной сети не должны превышать 0,15 высоты сечения рельефа, а плановых координат - 0,2 мм в масштабе карты.
Средние расхождения уравненных высот и геодезических отметок контрольных точек не должны превышать:
а) 0,2 hсеч - при съемках с высотой сечения рельефа 1 м, а также при съемках в масштабах 1:1000 и 1:500 с сечением 0,5 м;
б) 0,25 hсеч - при съемках с высотой сечения рельефа 2 и 2,5 м, а также при съемках в масштабах 1:2000 и 1:5000 с сечением 0,5 м;
в) 0,35 hсеч - при съемках с высотой сечения рельефа 5 и 10 м.
Средние расхождения в плановом положении контрольных точек не должны быть более 0,3 мм.
Предельно допустимые расхождения, равные удвоенным средним, могут встречаться не чаще чем в 5% случаев в открытых районах и 10% - в залесенных районах.
3.7.7. Средние расхождения высот на общих точках смежных маршрутов не должны превышать:
а) 0,4 hсеч. - при съемках с высотой сечения рельефа 1 м, а также при съемках в масштабах 1:1000 и 1:500 с сечением 0,5 м;
б) 0,5 hсеч. - при съемках с высотой сечения рельефа 2 и 2,5 м, а также при съемках в масштабах 1:2000 и 1:5000 с сечением 0,5 м;
в) 0,7 hсеч. - при съемках с высотой сечения рельефа 5 и 10 м.
Средние расхождения в плановом положении общих точек смежных маршрутов не должны быть более 0,5 мм в масштабе карты .
Остаточные погрешности условий коллинеарности в фототриангуляционных сетях, уравненных по опорным данным, не должны превышать аналогичные значения, полученные в свободных маршрутных сетях, более чем в 2 раза. Для таких погрешностей должен соблюдаться закон нормального распределения, т.е. количество погрешностей в каждом следующем интервале их должно быстро уменьшаться. Предельные значения погрешностей не должны превосходить утроенных средних значений, причем количество предельных погрешностей должно быть не более 1% общего числа их.
Средние разности бортовых данных и фотограмметрических значений соответствующих величин должны лежать в пределах удвоенной точности бортовых систем.
При превышении допустимых значений погрешностей анализируют измерения, а также правильность координат опорных и контрольных точек. При выявлении погрешностей или грубых промахов результаты должны быть откорректированы, а процесс уравнивания фототриангуляции выполнен повторно. При повторении процесса уравнивания блочной сети результаты каждого предыдущего счета следует использовать как стартовые для очередного, последующего счета.
После завершения процесса фототриангулирования по результатам его составляют каталоги координат точек фотограмметрического сгущения, элементов внешнего (а для цифровых систем - и внутреннего) ориентирования снимков и проводят оценку их точности. К каталогу прилагается комплект фотоабрисов точек.
Кроме основного каталога, составляют каталог координат контрольных фотограмметрических точек для проверки оригиналов созданных цифровых карт (планов) Отделом технического контроля.
Результаты оценки должны быть записаны в формуляры трапеций и в технический отчет. Отчет должен содержать сведения о методике исполнения работ по фотограмметрическому сгущению опорной сети, качестве сетей и итоговой точности определения координат.
Исходные данные и полученные окончательные результаты фототриангуляции следует сохранять в текстовом формате и форматах программ обработки путем создания архивной копии файлов на машинных носителях.
3.3 Построение фотограмметрической модели по стереопаре и одиночному снимку.
2.3.1 Построение фотограмметрической модели по аэроснимкам
Построение фотограмметрической модели на ЦФС должно обеспечиваться строгим математическим решением фотограмметрической засечки, полностью реализующим геометрическую точность снимка с учетом его масштаба, фотографического и фотограмметрического качества и величины элемента сканирования. Используемые алгоритмы должны также максимально обеспечивать автоматизацию выполнения основных процессов восстановления и ориентирования фотограмметрической модели.
Внутреннее ориентирование снимков выполняется путем измерения координатных меток (крестов) снимка и вычисления по их координатам параметров преобразования из системы координат прибора (сканера) в систему координат снимка. На цифровом приборе внутреннее ориентирование может выполняться в ручном и автоматизированном режимах. Внутреннее ориентирование сопровождается определением деформации снимков. Величина коэффициентов деформации не должна отличаться от единицы более чем на несколько единиц четвертого после десятичной точки знака, а их разность по осям Х и У не должна превышать нескольких единиц пятого знака. При неудовлетворительных результатах визирование на координатные метки повторяется.
Взаимное ориентирование снимков ведется путем измерения координат точек стереопары, выбираемых в шести стандартных зонах, и вычисления элементов взаимного ориентирования. Оптимальное количество измеренных в каждой стандартной зоне точек равно 2-3. Результаты взаимного ориентирования позволяют построить свободно ориентированную фотограмметрическую модель местности. На цифровом приборе взаимное ориентирование может выполняться в ручном и автоматизированном режимах. Контроль результатов взаимного ориентирования проводится по величинам остаточных поперечных параллаксов на всех измеренных точках. Взаимное ориентирование считается законченным, если среднее значение остаточных поперечных параллаксов не превышает 7 мкм или 0,4 величины элемента сканирования. При неудовлетворительных результатах должно выполняться их редактирование. Оно заключается в повторном измерении координат точек, замене плохих точек и включении в обработку новых, дополнительных точек.
Для внешнего ориентирования одиночного снимка и стереомодели могут использоваться либо элементы внешнего ориентирования, полученные на стадии фотограмметрического сгущения, либо координаты опорных точек, полученные из фотограмметрического сгущения или полевой привязки снимков.
В первом варианте измерение координат опорных точек не требуется. Во втором варианте необходимо измерить координаты опорных точек на одиночном снимке или стереомодели.
Для внешнего ориентирования одиночного снимка по второму варианту опорные точки выбирают, по возможности, в углах рабочей площади снимка. Контроль результатов ориентирования выполняется по величинам расхождения координат X, Y на всех опорных точках. Внешнее ориентирование считается законченным, если среднее значение остаточных погрешностей в плане не превышает 0,2 мм в масштабе карты . При неудовлетворительных результатов должно выполняться их редактирование (исключение / включение, перемер точек).
Для внешнего ориентирования фотограмметрической модели по второму варианту опорные точки выбирают, по возможности, в углах рабочей площади стереопары. На цифровом фотограмметрическом приборе модель может ориентироваться внешне в ручном и автоматизированном режимах. Контроль результатов ориентирования осуществляется по величинам расхождений координат X, Y, Z на всех опорных точках. Внешнее ориентирование модели считается законченным, если среднее значение остаточных погрешностей в плане не превышает 0,2 мм в масштабе карты , а по высоте - 0,2 высоты сечения рельефа. При неудовлетворительных результатах проводится их редактирование (исключение / включение, повторное измерение точек).
Для определения точности построения модели измеряют контрольные точки, выбирая их, по возможности, в различных частях модели. Качество модели считается удовлетворительным, если средняя погрешность координат контрольных точек в плане не превышают 0,3 мм в масштабе карты , а по высоте - 0,3 высоты сечения рельефа. После измерения всех контрольных точек выполняется оценка точности с выдачей протокола, включающего погрешности координат измеренных точек и их средние (или средние квадратические) значения.
2.3.2 Особенности фотограмметрической обработки космических кадровых снимков
Особенности фотограмметрической обработки космических снимков связаны с видом их проекции, форматом, углом поля зрения, величиной перекрытия и др. факторами.
При обработке любых космических снимков для их внешнего ориентирования должны использоваться программные модули, учитывающие влияние кривизны Земли.
Обработка космических снимков проекций, отличных от центральной (например, панорамных, шторно-щелевых и т.п.), требует использования цифровых фотограмметрических приборов с соответствующим программным обеспечением. Если на таких снимках отсутствуют калибровочные координатные метки, необходимые для выполнения внутреннего ориентирования, то в виде исключения допускается ориентирование по ограниченному числу некалиброванных меток (например, по двум меткам).
Обработка космических снимков увеличенных или нестандартных форматов (30х30 см, 30х45 см, 18х72 см и др.) может выполняться на цифровых приборах. При этом если фотограмметрический сканер не позволяет сканировать сразу всю площадь снимка, выполняется сканирование по фрагментам. Для внешнего ориентирования каждый фрагмент должен быть обеспечен достаточным количеством опорных точек.
Космическая съемка, как правило, выполняется длиннофокусными узкоугольными камерами, не обеспечивают с необходимой точностью определение по ним высот точек местности. В связи с этим по космическим снимкам должен проводиться только сбор (обновление) цифровой информации о контурах, а информация о рельефе должна быть получена по другим снимкам или другим методом.
Задача получения информации о контурах эффективно решается путем обработки одиночных снимков.
Для внешнего ориентирования космических снимков должно использоваться не 4 - 5, как для аэроснимков, а существенно большее количество опорных точек. Координаты последних, как правило, определяются по картам (планам) более крупного масштаба.
Обработка космических снимков должна поручаться операторам, имеющим достаточный опыт работы с таким типом изображений. По завершении обработки контролируется качество ее исполнения. Контроль проводится бригадиром, другим исполнителем или самим оператором-фотограмметристом в качестве самоконтроля.
2.3.3 Особенности фотограмметрической обработки космических сканерных изображений
Особенность фотограмметрической обработки космических сканерных изображений высокого разрешения связана с тем, что данные дистанционного зондирования (ДДЗ) могут быть предоставлены с различной степенью предварительной обработки и сопутствующей информацией о параметрах орбиты и модели сенсора. В этой связи возможны три варианта внешнего ориентирования одиночных изображений и стереопар сканерных изображений:
1) строгим способом, когда известна модель сенсора;
2) по орбитальным данным, когда известны RPC-коэффициенты;
3) по универсальному алгоритму, который основан на полиномиальных соотношениях координат точек сканерного изображения и их геодезических координат.
Первый является наиболее точным и рекомендуется в первую очередь для обработки космических сканерных изображений.
Для внешнего ориентирования космических сканерных изображений необходимо использовать опорные точки расположенные равномерно по всему изображению и не менее 10. Координаты опознаков рекомендуется определять наземными методами и с точностью не хуже ¼ размера пиксела сканерного изображения на местности. В качестве опознаков следует выбирать четкие контурные точки местности, которые однозначно опознаются на изображении. Допускается использовать топографические карты для определения координат и высот опознаков, если точность полученных координат согласуется с точностью определенной техническим заданием.
Из опыта обработки сканерных космических изображений высокого разрешения следует, что при фотограмметрической обработки стереопар сканерных изображений максимальный остаточный поперечный параллакс не должен превосходить 2 пикселей, а средняя ошибка 1 пикселя. Соответственные точки для взаимного ориентирования следует измерять преимущественно в автоматическом режиме равномерно по всей площади перекрытия и не менее 100.
Точность внешнего ориентирования определяется по расхождениям на опорных точках и должна соответствовать требованиям, изложенным в разделе 3.3.1
3.4 СОЗДАНИЕ ФОТОПЛАНОВ
Фотопланы изготавливаются:
- как самостоятельный вид топографической продукции (фотоплан, ортофотоплан, фотокарта, ортофотокарта);
- как основа для сбора по ней цифровой векторной информации.
Для изготовления фотопланов используются цифровое трансформирование снимком. Для трансформирования должны использоваться черно-белые, цветные или спектрозональные снимки, полученные, как правило, узкоугольными и нормальноугольными съемочными камерам, для снимков которых меньше влияние рельефа на смещения изображений точек.
Процесс получения цифрового фотоплана включает следующие основные этапы:
- расчет элемента разрешения для сканирования снимков;
- ориентирование снимков;
- получение информации о рельефе;
- выбор фрагментов для трансформирования (ортотрансформирования);
- ортотрансформирование или простое трансформирование по фрагментам;
- сшивка фрагментов мозаик с выравниванием тона, коррекции изображения;
- получение трансформированного изображения в пределах заданной трапеции или границ;
- оформление.
Расчет элемента разрешения РР (в мкм) для сканирования снимков выполняется исходя из разрешающей способности исходных снимков R,
РР = 1000/2*R
Значения параметров внешнего ориентирования цифровых снимков, необходимые для выполнения процессов цифрового трансформирования, могут быть получены в результате построения сетей пространственной аналитической фототриангуляции или путем непосредственной фотограмметрической обработки стереопар и одиночных снимков на цифровых фотограмметрических приборах.
Информация о рельефе, необходимая для цифрового трансформирования снимков, может быть получена в результате стереофотограмметрической обработки снимков или по цифровым моделям рельефа для существующих топографических карт и планов.
Точность и плотность узлов ЦМР должна обеспечивать определение высот элементарных участков цифрового трансформированного снимка с погрешностями (в м) не более
hпред. = 0,3 f MК /r,
где 0,3 мм - графическая точность топографической карты ;
f - фокусное расстояние съемочной камеры (в мм);
МК - знаменатель масштаба создаваемого фотоплана;
г - максимальное удаление точки снимка от точки надира (в мм).
Тип создаваемой цифровой модели рельефа определяется требованиями используемого для цифрового трансформирования программного обеспечения.
Если перепад высот местности не превышает удвоенной величины hпред., трансформирование производится на среднюю горизонтальную плоскость. Допустимые значения hпред. или превышения точек местности в пределах используемой части снимка не должны превышать значений, рассчитанных по табл. 1.
Таблица 1
Допустимые hпред. (м) при масштабе фотоплана 1:10000 | ||||||||||||
для формата кадра 18х18 см и fК (мм) | для формата кадра 23х23 см и fК (мм) | |||||||||||
Радиус рабочей площади на аэроснимке (мм) | Радиус рабочей площади на аэроснимке (мм) | |||||||||||
7,5 | ||||||||||||
4,5 | 7,5 | |||||||||||
5,5 | 7,5 | 4,5 | 6,5 |
Примечание. Если масштаб 1:М создаваемого фотоплана отличается от 1:10000, то допустимые высоты зон определяют умножением табличных значений на отношение М:10000.
При получение цифровой модели рельефа на цифровом фотограмметрическом приборе могут использоваться автоматический или ручной режим сбора ЦМР, либо их комбинация. В зависимости от характера рельефа шаг регулярной сетки ЦМР может меняться в пределах участка работ и стереопары. Мелкие элементы рельефа (промоины, небольшие перегибы скатов, канавы и т. п.) в пределах допустимых hпред. не принимаются во внимание, а в населенных пунктах марка совмещается с поверхностью земли.