Среднее: типическое значение для количественных данных

Среднее можно интерпретировать как равномерное распределение суммы всех значений между элементарными единицами совокупности. Таким образом, если каждое значение из набора данных заменить средним, то общая сумма не изменится. Это свойство среднего полезно в тех ситуациях, когда необходимо планировать общую сумму для большой группы. В этом случае сначала вычисляют среднее для выборки данных из этой группы. Затем полученное среднее умножают на количество элементов в большой группе. В результате получают оценку или прогноз суммы для большей по размеру совокупности.

Задание 3. Определить количество бракованных изделий в дневном выпуске.

Каждая партия изделий компании содержит 1000 изделий. В дневном выпуске произведено 253 партии. Для проведения контроля качества изделий была случайным образом взята выборка, включающая 10 партий. Число бракованных изделий в каждой партии составило: 3, 8, 2, 5, 0, 7, 14, 7, 4, 1. Определить, какое количество бракованных изделий можно ожидать в дневном выпуске, состоящем из 253 000 изделий.

1. Откройте файл Описательная статистика.xls.

2. На Листе2 в ячейке А1 задайте метку Брак, а в диапазон A2:A11 введите исходные данные.

3. В ячейке С1 задайте метку Среднее, а в ячейке С2 вычислите Среднее (уровень брака) для бракованных изделий из заданной выборки данных.

Замечание. При расчете среднего воспользуйтесь статистической функцией СРЗНАЧ.

4. В ячейке А13 задайте метку Количество бракованных изделий. В ячейке А14 вычислите ожидаемое количество бракованных изделий в дневном выпуске.

Задание 4. Определить средний балл результатов обучения.

Предположим, что в университете каждой дисциплине, в зависимости от ее важности, присваивается определенное количество очков. Система оценок включает оценки от 1,0 (незачет) до 5,0 (отлично). Студент в конце семестра имеет результаты, указанные в таблице 2. Определить средний балл студента.

Таблица 2. Оценки студента за семестр

Дисциплина Очки Оценка
Статистика 4,7
Экономика 4,3
Маркетинг 4,5
Спецкурс 3,8

В данном задании элементы данных (дисциплины) нельзя рассматривать как равноценные. В этом случае целесообразно не просто усреднить оценки, а вычислить взвешенное среднее, которое позволяет учесть степень важности (вес) каждой дисциплины. Веса обычно представляют собой положительные числа, сумма которых равна 1. Формула для вычисления взвешенного среднего с учетом весов имеет следующий вид.

Взвешенное среднее =

где w1, w2,…, wn – соответствующие веса, сумма которых равна 1. Для нашего примера веса определяются делением количества очков по каждой дисциплине на общее количество очков (n=15).

1. Откройте файл Описательная статистика.xls.

2. На Листе2 в ячейках F1 и G1 задайте метки Очки и Оценка соответственно. В диапазон F2:G5 введите данные Таблицы 2.

3. В ячейке F7 задайте метку Взвешенное среднее.

4. Чтобы найти взвешенное среднее, вначале дайте имена каждой колонке чисел. Для этого выделите обе колонки вместе с метками и выберите команду:

Вставка®Имя®Создать

В появившемся диалоговом окне включите опцию в строке выше и щелкните на кнопке ОК. Теперь выделите ячейку F8 и вычислите взвешенное среднее, используя из категории Полный алфавитный перечень функции Excel СУММПРОИЗВ и СУММ. Формула вычисления имеет следующий вид: =СУММПРОИЗВ(Очки;Оценка)/СУММ(Очки). Уменьшите разрядность результата до двух десятичных знаков после запятой. Вы получите средневзвешенное значение, равное 4,45.

5. Вычислите средний балл студента, просто усреднив оценки. Для этого в ячейке F10 задайте метку Среднее, а в ячейке F11 получите среднее (4,33), используя функцию СРЗНАЧ.

Как видите, результат среднего ниже средневзвешенного, т.к. не учитывает важность дисциплин. Тем не менее, низкая оценка за Спецкурс незначительно повлияла на средний балл студента, потому что вес этой дисциплины мал (всего 1 очко). Средний балл мог оказаться существенно малым, если бы студент получил низкие оценки по экономическим дисциплинам!