Корневые показатели качества.

К ним относятся: степень колебательности m, степень устойчивости h и др.

Не требуют построения переходных кривых, поскольку определяются по корням характеристического полинома. Для этого корни полинома откладываются на комплексной плоскости и по ним определяются:

Степень устойчивости h определяется как граница, правее которой корней нет, т.е.

h = min ,

где Re(si) - действительная часть корня si.

Степень колебательности m рассчитывается через угол g: m = tg g. Для определения g проводятся два луча, которые ограничивают все корни на комплексной плоскости. g - угол между этими лучами и мнимой осью. Степень колебательности может быть определена также по формуле:

m = min .

 

Частотные показатели качества.

Для определения частотных показателей качества требуется построение АФХ разомкнутой системы и АЧХ замкнутой системы.

По АФХ определяются запасы: DA - по амплитуде, Dj - по фазе.

Запас DA определяется по точке пересечения АФХ с отрицательной действительной полуосью.

Для определения Dj строится окружность единичного радиуса с центром в начале координат. Запас Dj определяется по точке пересечения с этой окружностью.

По АЧХ замкнутой системы определяются показатели колебательности по заданию М и ошибке МЕ как максимумы соответственно АЧХ по заданию и АЧХ по ошибке.

 

Связи между показателями качества.

Описанные выше показатели качества связаны между собой определенными соотношениями:

; tp = ; ; M = .

Настройка регуляторов.

Типы регуляторов.

Для регулирования объектами управления, как правило, используют типовые регуляторы, названия которых соответствуют названиям типовых звеньев:

1) П-регулятор (пропорциональный регулятор)

WП(s) = K1.

Принцип действия заключается в том, что он вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка е, тем больше управляющее воздействие u).

2) И-регулятор (интегрирующий регулятор)

WИ(s) = .

Управляющее воздействие пропорционально интегралу от ошибки.

3) Д-регулятор (дифференцирующий регулятор)

WД(s) = K2 s.

Генерирует управляющее воздействие только при изменении регулируемой веричины:

u = K2 .

На практике данные простейшие регуляторы комбинируются в регуляторы вида:

4) ПИ-регулятор (пропорционально-интегральный регулятор)

 
 


WПИ(s) = K1 + .

 
 
Рис. 1.40

 


5) ПД-регулятор (пропорционально-дифференциальный регулятор)

 
 


WПД(s) = K1 + K2 s.

 

 
 
Рис. 1.41

 


6) ПИД-регулятор.

WПИД(s) = K1 + + K2 s.

Наиболее часто используется ПИД-регулятор, поскольку он сочетает в себе достоинства всех трех типовых регуляторов.