Классификация экологических факторов
Лекция №6
Экологические факторы окружающей среды. Абиотические факторы
1. Понятие экологический фактор
2. Классификация
3. Абиотические факторы
3.1. Общие закономерности распределения уровней и региональных режимсов экологических факторов
3.2. Космические факторы
3.3. Лучистая энергия Солнца и её значение для организмов
3.4. Абиотические факторы наземной среды (температура, осадки, влажность, движение воздушных масс, давление, химические факторы, пожары)
3.5. Абиотические факторы водной среды (температурная стратификация, прозрачность, соленость, растворенные газы, кислотность)
3.6. Абиотические факторы почвенного покрова (состав литосферы, понятия «почва» и «плодородие», состав и структура почв)
3.7. Биогенные вещества как экологический фактор
1. Экологический фактор - это любой элемент окружающей среды, способный оказывать прямое или косвенное воздействие на живой организм хотя бы на одном из этапов его индивидуального развития, или любое условие среды, на которое организм отвечает приспособительными реакциями.
В общем случае фактор - это движущая сила какого-либо процесса или влияющее на организм условие. Окружающая среда характеризуется огромным разнообразием экологических факторов, в том числе и пока не известных. Каждый живой организм в течение всей своей жизни находится под воздействием множества экологических факторов, различающихся происхождением, качеством, количеством, временем воздействия, т.е. режимом. Таким образом, окружающая среда - это фактически набор воздействующих на организм экологических факторов.
Но если окружающая среда, как мы уже сказали, не имеет количественных характеристик, то каждый отдельный фактор (будь то влажность, температура, давление, белки пищи, количество хищников, химическое соединение в воздухе и т. п.) характеризуется мерой и числом, т. е. его можно измерить во времени и пространстве (в динамике), сравнить с каким-либо эталоном, подвергнуть моделированию, предсказанию (прогнозу) и в конечном счете изменить в заданном, направлении. Управлять можно только тем, что имеет меру и число.
Для инженера предприятия, экономиста, санитарного врача или следователя прокуратуры требование "охранять окружающую среду" не имеет смысла. А если задача или условие выражены в количественной форме, в виде каких-либо величин или неравенств (например: Сi < ПДКi или Mi < ПДВi то они вполне понятны и в практическом, и в юридическом отношении. Задача предприятия - не "охранять природу", а с помощью инженерных или организационных приемов выполнить названное условие, т. е. именно таким путем управлять качеством окружающей среды, чтобы она не представляла угрозы здоровью людей. Обеспечение выполнения этих условий - задача контролирующих служб, а при невыполнении их предприятие несет ответственность.
Классификация экологических факторов
Любая классификация какого-либо множества это метод его познания или анализа. Предметы и явления можно классифицировать по различным признакам, исходя из поставленных задач. Из многих существующих классификаций экологических факторов для задач данного курса целесообразно использовать следующую (рис. 1).
Все экологические факторы в общем случае могут быть сгруппированы в две крупные категории: факторы неживой, или косной, природы, называемые иначе абиотическими или абиогенными, и факторы живой природы - биотические, или биогенные. Но по своему происхождению обе группы могут быть как природными, так и антропогенными, т. е. связанными с влиянием человека. Иногда различают антропические и антропогенные факторы. К первым относят лишь прямые воздействия человека на природу (загрязнение, промысел, борьбу с вредителями), а ко вторым - преимущественно косвенные последствия, связанные с изменением качества окружающей среды.
Рис. 1. Классификация экологических факторов
Человек в своей деятельности не только меняет режимы природных экологических факторов, но и создает новые, например, синтезируя новые химические соединения - ядохимикаты, удобрения, лекарства, синтетические материалы и др. В числе факторов неживой природы присутствуют физические(космические, климатические, орографические, почвенные) и химические (компоненты воздуха, воды, кислотность и иные химические свойства почвы, примеси промышленного происхождения). К биотическим факторам относятся зоогенные (влияние животных), фитогенные (влияние растений), микробогенные (влияние микроорганизмов). В некоторых классификациях к биотическим факторам относят и все антропогенные факторы, включая физические и химические.
Наряду с рассмотренной, существуют и другие классификации экологических факторов. Выделяют факторы зависимые и независимые от численности и плотности организмов. Например, климатические факторы не зависят от численности животных, растений, а массовые заболевания, вызываемые патогенными микроорганизмами (эпидемии) у животных или растений, безусловно, связаны с их численностью: эпидемии возникают при тесном контакте между индивидуумами или при их общем ослаблении из-за нехватки корма, когда возможна быстрая передача болезнетворного начала от одной особи к другой, а также утрачена сопротивляемость к патогену.
Макроклимат от численности животных не зависит, а микроклимат может существенно изменяться в результате их жизнедеятельности. Если, например, насекомые при их высокой численности в лесу уничтожат большую часть хвои или листвы деревьев, то здесь изменится ветровой режим, освещенность, температура, качество и количество корма, что скажется на состоянии последующих поколений тех же или других, обитающих здесь животных. Массовые размножения насекомых привлекают насекомых-хищников и насекомоядных птиц. Урожаи плодов и семян влияют на изменение численности мышевидных грызунов, белки и ее хищников, а также многих птиц, питающихся семенами.
Можно делить все факторы на регулирующие (управляющие) и регулируемые (управляемые), что также легко понять в связи с приведенными выше примерами.
Оригинальную классификацию экологических факторов предложил А. С. Мончадский. Он исходил из представлений о том, что все приспособительные реакции организмов к тем или иным факторам связаны со степенью постоянства их воздействия, или, иначе говоря, с их периодичностью. В частности, он выделял:
1. первичные периодические факторы (те, которым свойственна правильная периодичность, связанная с вращением Земли: смена времен года, суточная и сезонная смена освещенности и температуры); эти факторы изначально присущи нашей планете и зарождающаяся жизнь должна была сразу к ним приспосабливаться;
2. вторичные периодические факторы (они являются производными от первичных); к ним относятся все физические и многие химические факторы, например влажность, температура, осадки, динамика численности растений и животных, содержание растворенных газов в воде и др.;
3. непериодические факторы, которым не свойственна правильная периодичность (цикличность); таковы, например, факторы, связанные с почвой, или разного рода стихийные явления.
Разумеется, "непериодично" лишь само тело почвы, подстилающие ее грунты, а динамика температуры, влажности и многих других свойств почвы также связана с первичными периодическими факторами.
Антропогенные факторы однозначно относятся к непериодическим. В числе таких факторов непериодического действия прежде всего - загрязняющие вещества, содержащиеся в промышленных выбросах и сбросах. К природным периодическим и непериодическим факторам живые организмы в процессе эволюции способны вырабатывать адаптации (например, спячка, зимовка и т. п.), а к изменению содержания примесей в воде или воздухе растения и животные, как правило, не могут приобрести и наследственно закрепить соответствующие адаптации. Правда, некоторые беспозвоночные, например растениеядные клещи из класса паукообразных, имеющие в условиях закрытого грунта десятки поколений в году, способны при постоянном применении против них одних и тех же ядохимикатов образовывать устойчивые к яду расы путем отбора особей, наследующих такую устойчивость.
Необходимо подчеркнуть, что к понятию "фактор" следует подходить дифференцированно, учитывая, что факторы могут быть как прямого (непосредственного), так и опосредованного действия. Различия между ними состоят в том, что фактор прямого действия можно выразить количественно, в то время как факторы непрямого действия - нет. Например, климат или рельеф могут быть обозначены в основном словесно, но они определяют режимы факторов прямого действия - влажности, длины светового дня, температуры, физико-химических характеристик почвы и др.
Абиотические факторы
3.1. Общие закономерности распределения уровней и региональных режимов экологических факторов
Географическая оболочка Земли (как и Общие биосфера) неоднородна в пространстве, она дифференцирована на отличающиеся друг от друга территории. Ее последовательно делят на физико-географические пояса, географические зоны, внутризональные горные и равнинные области и подобласти и подзоны и т. д.
Физико-географический пояс - это крупнейшая таксономическая единица географической оболочки, слагающаяся из ряда географических зон, близких по тепловому балансу и режиму увлажнения.
Выделяют, в частности, арктический и антарктический, субарктический и субантарктический, северные и южные умеренные и субтропические, субэкваториальный и экваториальный пояса.
Географическая (она же - природная, ландшафтная) зона - это значительная часть физико-географического пояса с особым характером геоморфологических процессов, с особыми типами климата, растительности, почв, животного и растительного мира.
Например, в пределах северного полушария выделяют следующие зоны: ледяную, тундры, лесотундры, тайги, смешанных лесов Русской равнины, муссонных лесов Дальнего Востока, лесостепную, степную, пустынные умеренного и субтропического пояса, средиземноморскую и др. Зоны имеют преимущественно (хотя далеко не всегда) вытянутые в широком плане очертания и характеризуются сходными природными условиями, определенной последовательностью в зависимости от широтного положения. Таким образом, широтная географическая зональность - это закономерное изменение, физико-географических процессов, компонентов и комплексов от экватора к полюсам. Понятно, что речь идет в первую очередь о совокупности факторов, образующих климат.
Зональность обусловлена главным образом характером распределения солнечной энергии по широтам, т. е. с уменьшением ее прихода от экватора к полюсам и неравномерностью увлажнения. Положение о зональности географической оболочки (а следовательно, и биосферы) было сформулировано известным русским почвоведом В. В. Докучаевым.
Наряду с широтной существует также типичная для горных районов вертикальная (или высотная) зональность, т. е. смена растительности, животного мира, почв, климатических условий, по мере подъема от уровня моря, связанная в основном с изменением теплового баланса: перепад температуры воздуха составляет 0,6-1,0 °С на каждые 100 м высоты.
Разумеется, в природе не все столь однозначно закономерно: вертикальная зональность может осложняться экспозицией склона, а широтная - иметь зоны, вытянутые в субмеридиональном направлении, как, например, в условиях горных хребтов.
Однако в целом от теплового баланса зависят режимы и динамика важнейших абиотических факторов, т. е. климат, процессы почвообразования, типы растительности, видовой состав и динамика численности животного мира и др.
Географическая зональность присуща не только материкам, но и Мировому океану, в пределах которого разные зоны различаются количеством приходящей солнечной радиации, балансами испарения и осадков, температурой воды, особенностями поверхностных и глубинных течений, а следовательно, и миром живых организмов.
3.2. Космические факторы
Биосфера, как среда обитания живых организмов, не изолирована от сложных процессов факторы протекающих в космическом пространстве, причем связанных непосредственно не только с Солнцем. На Землю попадает космическая пыль, метеоритное вещество. Земля периодически сталкивается с астероидами, сближается с кометами. Через Галактику проходят вещества и волны, возникающие в результате вспышек сверхновых звезд. Разумеется, наша планета наиболее тесно связана с процессами, происходящими на Солнце- с так называемой солнечной активностью. Суть этого явления состоит превращении энергии, накапливающейся в магнитных поясах Солнца, в энергию движения газовых масс, быстрых частиц, коротковолнового электромагнитного излучения.
Наиболее интенсивные процессы наблюдаются в центрах активности, называемых активными областями, в которых наблюдается усиление магнитного поля, возникают области повышенной яркости, а также так называемые солнечные пятна. В активных областях могут происходить взрывоподобные выделения энергии, сопровождающиеся выбросами плазмы, внезапным появлением солнечных космических лучей, усилением коротковолнового и радиоизлучения. Известно, что изменения уровня вспышечной активности имеют циклический характер с обычным циклом, равным 22 годам, хотя известны колебания периодичностью от 4,3 до 1850 лет. Солнечная активность влияет на ряд жизненных процессов на Земле - от возникновения эпидемий и всплесков рождаемости до крупных климатических преобразований. Это было доказано еще в 1915 г. русским ученым А. Л. Чижевским, основателем новой науки — гелиобиологии (от греч. хелиос — Солнце), рассматривающей воздействие изменений активности Солнца на биосферу Земли.
3.3. Лучистая энергия Солнца и её значение для организмов
Энергия солнечного излучения распространяется в пространстве в виде электромагнитных волн. Около 99 % ее составляют лучи с длиной волны 170-4000 нм, в том числе 48 % приходится на видимую часть спектра с длиной волны 400-760 нм, а 45 % - на инфракрасную (длина волны от 750 нм до 10~3 м), около 7 % -на ультрафиолетовую (длина волны менее 400 нм). В процессах фотосинтеза наиболее важную роль играет фотосинтетически активная радиация (380-710 нм).
Количество энергии солнечного излучения, поступающего к Земле (к верхней границе атмосферы), практически постоянно и оценивается значением 1370 Вт/м2. Эта величина называется солнечной постоянной. Однако приход энергии солнечного излучения к поверхности самой Земли существенно колеблется в зависимости от ряда условий: высоты Солнца над горизонтом, широты, состояния атмосферы и др. Форма Земли (геоид) близка к шарообразной. Поэтому наибольшее количество солнечной энергии поглощается в низких широтах (экваториальный пояс), где температура воздуха у земной поверхности, как правило, выше, чем в средних и высоких широтах. Приход энергии солнечного излучения в разные районы земного шара и ее перераспределение определяют климатические условия этих районов.
Проходя через атмосферу, солнечное излучение рассеивается на молекулах газов, на взвешенных примесях (твердых и жидких), поглощается водяными парами, озоном, диоксидом углерода, пылевидными частицами. Рассеянное солнечное излучение частично доходит до земной поверхности. Его видимая часть создает свет днем при отсутствии прямых солнечных лучей, например при сильной облачности. Общий приход теплоты к поверхности Земли зависит от суммы прямого и рассеянного излучения, которая увеличивается от полюсов к экватору.
Энергия солнечного излучения не только поглощается поверхностью Земли, но и отражается ею в виде потока длинноволнового излучения. Более светло окрашенные поверхности отражают свет более интенсивно, чем темные. Так, чистый снег отражает 80-95 %, загрязненный - 40-50, черноземная почва - 5-14, светлый песок - 35-45, полог леса - 10-18%. Отношение отражаемого поверхностью потока солнечного излучения к поступившему называется альбедо. Антропогенная деятельность существенно влияет на климатические факторы, изменяя их режимы. О глобальных проблемах, вызванных деятельностью человека Вы можете познакомиться в лекции «Глобальные проблемы человечества» данного курса.
Свет — это первичный источник энергии, без которого невозможна жизнь на Земле. Он участвует в фотосинтезе, обеспечивая создание органических соединений из неорганических растительностью Земли, и в этом его важнейшая энергетическая функция. Но в фотосинтезе участвует лишь часть спектр в пределах от 380 до 760 нм, которую называют областью физиологически активной радиации (ФАР). Внутри нее для фото синтеза наибольшее значение имеют красно-оранжевые лучи (600—700 нм) и фиолетово-голубые (400—500 нм), наименьшее — желто-зеленые (500—600 нм). Последние отражаются, что и придает хлорофиллоносным растениям зеленую окраску. Однако свет не только энергетический ресурс, но и важнейший экологический фактор, весьма существенно влияющий на биоту в целом и на адаптационные процессы и явления в организмах.
За пределами видимого спектра и ФАР остаются инфракрасная (ИК) и ультрафиолетовая (УФ) области. УФ-излучение несет много энергии и обладает фотохимическим воздействием — организмы к нему очень чувствительны. ИК-излучение обладает значительно меньшей энергией, легко поглощается водой, но некоторые сухопутные организмы используют его для поднятия температуры тела выше окружающей.
Важное значение для организмов имеет интенсивность освещения. Растения по отношению к освещенности подразделяются на светолюбивые (гелиофиты), тенелюбивые (сциофиты) и теневыносливые.
Первые две группы обладают разными диапазонами толерантности в пределах экологического спектра освещенности. Яркий солнечный свет — оптимум гелиофитов (луговые травы, хлебные злаки, сорняки и др.), слабая освещенность — оптимум тенелюбивых (растения таежных ельников, лесостепных дубрав, тропических лесов). Первые не выносят тени, вторые — яркого солнечного света.
Теневыносливые растения имеют широкий диапазон толерантности к свету и могут развиваться как при ярком освещенности, так и в тени.
Свет имеет большое сигнальное значение и вызывает регуляторные адоптации организмов. Одним из самых надежных сигналов, регулирующих активность организмов во времени, является длина дня — фотопериод.
Фотопериодизм как явление — это реакция организма на сезонные изменения длины дня. Длина дня в данном месте, в данное время года всегда одинакова, что позволяет растению и животному определиться на данной широте со временем года, т. е. временем начала цветения, созревания и т. п. Иными словами, фотопериод — это некое «реле времени», или «пусковой механизм», включающий последовательность физиологических процессов в живом организме.
Фотопериодизм нельзя отождествлять с обычными внешними суточными ритмами, обусловленными просто сменой дня и ночи. Однако суточная цикличность жизнедеятельности у животных и человека переходит во врожденные свойства вида, т. е. становится внутренними (эндогенными) ритмами. Но в отличие от изначально внутренних ритмов их продолжительность может не совпадать с точной цифрой — 24 часа — на 15— 20 минут, и в связи с этим, такие ритмы называют циркадными (в переводе — близкие к суткам).
Эти ритмы помогают организму чувствовать время, и эту способность называют «биологическими часами». Они помогают птицам при перелетах ориентироваться по солнцу и вообще ориентируют организмы в более сложных ритмах природы.
Фотопериодизм, хотя и наследственно закреплен, проявляется лишь в сочетании с другими факторами, например, температурой: если в день Х холодно, то растение зацветает позже, или в случае с вызреванием — если холод наступает раньше дня X, то, скажем, картофель дает низкий урожай, и т. п. В субтропической и тропической зоне, где длина дня по сезонам года меняется мало, фотопериод не может служить важным экологическим фактором — на смену ему приходит чередование засушливых и дождливых сезонов, а в высокогорье главным сигнальным фактором становится температура.
Так же, как на растениях, погодные условия отражаются на пойкилотермных животных, а гомойотермные отвечают на это изменениями в своем поведении: изменяются сроки гнездования, миграции и др.
Человек научился использовать описанные выше явления. Длину светового дня можно изменять искусственно, тем самым изменяя сроки цветения в плодоношения растений (выращивание рассады еще в зимний период и даже плодов в теплицах), увеличивая яйценоскость кур, и др.
Развитие живой природы по сезонам года происходит в соответствии с биоклиматическим законом, который носит имя Хоякинса: сроки наступления различных сезонных явлений (фенодат) зависят от широты, долготы местности и ее высоты над уровнем моря. Значит, чем севернее, восточнее и выше местность, тем позже наступает весна и раньше осень. Для Европы на каждом градусе широты сроки сезонных событий наступают через три дня, в Северной Америке — в среднем через четыре дня на каждый градус широты, на пять градусов долготы и на 120 м высоты над уровнем моря.
Знание фенодат имеет большое значение для планирования различных сельхозработ в других хозяйственных мероприятий.
3.4. Абиотические факторы наземной среды
Абиотическая компонента наземной среды (суши) включает совокупность климатических и почвенно-грунтовых условии, т. е. множество динамичных во времени и пространстве элементов, связанных друг с другом и влияющих на живые организмы.
Особенности воздействия на биосферу со стороны космических факторов и проявлений солнечной активности состоят в том, что поверхность нашей планеты (где сосредоточена "пленка жизни") как бы отделена от Космоса мощным слоем вещества в газообразном состоянии, т. е. атмосферой. Абиотическая компонента наземной среды включает совокупность климатических, гидрологических, почвенно-грунтовых условий, т. е. множество динамичных во времени и пространстве элементов, связанных между собой и влияющих на живые организмы. Атмосфере как среде, воспринимающей космические и связанные с Солнцем факторы, принадлежит важнейшая климатоформирующая функция.