Новейшие достижения в области медицинской биотехнологии
Основные достижения и перспективы развития сельскохозяйственной биотехнологии
Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого – трансгенез.
Благодаря биотехнологии были получены растения с улучшенными питательными свойствами, устойчивые к гербицидам и со встроенной защитой против вирусов и вредителей (соя, помидоры,хлопок, папайа,). ГМ растения, используемые в животноводстве, – кукуруза, соевые бобы, канола и хлопок
С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.
Растениеводство | Животноводство |
Семена ГМ растений, устойчивых к гербицидам | Производство аминокислот (пищевые добавки для животных) |
Семена ГМ растений, устойчивых к насекомым | Выращивание животных на органы и ткани для человека (ксенотрансплантанты) |
Семена ГМ растений, устойчивых к вирусам | Диагностика продуктов (свежесть, отсутствие возбудителей инфекций) |
Семена ГМ растений с добавленными свойствами (повышенное содержание аминокислот, жирных кислот) | Метаболики для животных (рост удоев молока, привесов мяса) |
Биопестициды | |
Вакцины для животных | |
Выведение новых пород животных и аквакультур |
Перспективы:
1. Специалисты биотехнологий разрабатывают возможности увеличения количества белка в растениях, что позволит в будущем отказаться от мяса.
2. Для агрокомплекса ведутся разработки в направлении усовершенствования функций самозащиты растений от насекомых-вредителей, посредством выделения яда.
3. Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. Дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства с одной стороны, и микробного синтеза - с другой, в формировании продовольственной базы человечества.
4. В основе промышленного использования достижений биотехнологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.
5. В качестве источников сырья для биотехнологии все большее значение приобретают воспроизводимые ресурсы непищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.
6. Биодеградация (переработка) целлюлозы. Полное расщепление целлюлозы до глюкозы может решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт.
Новейшие достижения в области медицинской биотехнологии
- В области медицинской биотехнологии были разработаны интерфероны ~ белки, способные подавлять размножение вирусов.
- Производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге.
- Стало возможным производить полимеры, заменяющие органы и ткани человека (почки, кровеносные сосуды, клапаны, аппарат сердце — легкие и т.д.).
- Массовая иммунизация (вакцинация) стала самым доступным и экономически эффективным способом профилактики инфекционных болезней. Так, за 30 лет вакцинирования российских детей от кори, заболеваемость снизилась ей в 620 раз.
- Разработаны методы получения антибиотиков. Открытие антибиотиков произвело переворот в лечении инфекционных заболеваний. Ушли в прошлое представления о неизлечимости многих бактериальных инфекций (чума, туберкулез, сепсис, сифилис и др.).
- Одно из последних достижений биотехнологической диагностики – метод биосенсоров, которые «отлавливают» связанные с болезнями молекулы и подают сигналы на датчики. Биосенсорную диагностику используют для определения глюкозы в крови больных диабетом. Предполагается, что со временем можно будет имплантировать датчики биосенсоров в кровеносные сосуды больных, чтобы более точно контролировать их потребность в инсулине.
- Стало возможным не только создание «биологических реакторов», трансгенных животных, генно-модифицированных растений, но и проведение генетической паспортизации (полного исследования и анализа генотипа человека, проводимого, как правило, сразу после рождения, для определения предрасположенности к различным заболеваниям, возможную неадекватную (аллергическую) реакцию на те или иные лекарства, а также склонность к определенным видам деятельности). Генетическая паспортизация позволяет прогнозировать и уменьшать риски сердечно-сосудистых и онкологических заболеваний, исследовать и предотвращать нейродегенеративные заболевания и процессы старения и т.д.
- Ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни.
- Появились возможности для ранней диагностики наследственных болезней и своевременной профилактики наследственной патологии.
- Важнейшей областью для медицинской биотехнологии стала клеточная инженерия, в частности технология получения моноклональных антител, которые продуцируются в культуре или в организме животного гибридными лимфоидными клетками — гибридомами. Технология получения моноклональных антител оказала большое влияние на фундаментальные и прикладные исследования в области медицины и на медицинскую практику. На их основе разработаны и применяются новые системы иммунологического анализа — радиоиммунологический и иммуноферментативный анализ. Они позволяют определять в организме исчезающе малые концентрации специфических антигенов и антител.
- Самой передовой технологией в диагностике заболеваний ныне считают микрочипы. Их применяют для ранней диагностики инфекционных, онко- и генетических заболеваний, аллергенов, а также при исследовании новых лекарств.