Калибровочная симметрия
Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трех других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля, гравитон. На первый взгляд это предположение кажется особенно уместным в силу того, что квантовая теория трех негравитационных взаимодействий выявила волнующее сходство между ними и свойством гравитационного поля, с которыми мы столкнулись в главе 3.
Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели — независимо от состояния движения — являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчета. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.
Для того чтобы получить общее представление РѕР± этих достаточно тонких принципах симметрии, рассмотрим РѕРґРёРЅ важный пример. Как указано РІ таблице, содержащейся РІ примечании 1 Рє главе 1, каждый кварк может быть окрашен РІ РѕРґРёРЅ РёР· трех «цветов» (вычурно названных красным, зеленым Рё СЃРёРЅРёРј, хотя это РЅРµ более чем условность Рё РЅРµ имеет никакого отношения Рє цвету РІ обычном понимании этого слова). Рти цвета определяют его реакцию РЅР° сильное взаимодействие точно так Р¶Рµ, как электрический заряд определяет реакцию РЅР° электромагнитное взаимодействие. Р’СЃРµ полученные Рє настоящему времени данные свидетельствуют Рѕ том, что между кварками наблюдается симметрия: РІСЃРµ взаимодействия между одноцветными кварками (красного СЃ красным, зеленого СЃ зеленым или синего СЃ СЃРёРЅРёРј) являются идентичными, как Рё идентичными являются взаимодействия между разноцветными кварками (красного СЃ зеленым, зеленого СЃ СЃРёРЅРёРј или синего СЃ красным). РќР° самом деле факты еще более поразительны. Если три цвета, С‚. Рµ. три различных сильных заряда, сдвинуть определенным образом (РіСЂСѓР±Рѕ РіРѕРІРѕСЂСЏ, если РЅР° нашем вычурном цветовом языке красный, зеленый Рё СЃРёРЅРёР№ изменятся Рё станут, например, желтым, РёРЅРґРёРіРѕ Рё фиолетовым), то даже если параметры СЃРґРІРёРіР° Р±СѓРґСѓС‚ меняться РѕС‚ РѕРґРЅРѕРіРѕ момента времени Рє РґСЂСѓРіРѕРјСѓ Рё РѕС‚ точки Рє точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: РѕРЅР° является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо РѕС‚ того, как РјС‹ вращаем ее РІ руках Рё РїРѕРґ каким углом РЅР° нее смотрим. Аналогично РјРѕР¶РЅРѕ сказать, что наша Вселенная обладает симметрией сильного взаимодействия: физические явления РЅРµ изменятся РїСЂРё сдвигах зарядов этого взаимодействия — Вселенная совершенно РЅРµ чувствительна Рє РЅРёРј. РџРѕ историческим причинам
Глава 5. Необходимость РЅРѕРІРѕР№ теории: РћРўРћ versus квантовая механикаВВВВВ 91
физики говорят, что симметрия сильного взаимодействия является примером калибровочной симметрии5).
Здесь следует подчеркнуть РѕРґРёРЅ существенный момент. Как показали работы Германа Вейля 1920-С… РіРі., Р° также работы Чень-РќРёРЅ РЇРЅРіР° Рё Роберта Миллса 1950-С… РіРі., аналогично тому, что симметрия между всеми возможными точками наблюдения РІ общей теории относительности требует существования гравитационной силы, калибровочная симметрия требует существования РґСЂСѓРіРёС… РІРёРґРѕРІ СЃРёР». РџРѕРґРѕР±РЅРѕ тому, как чувствительная система контроля параметров окружающей среды поддерживает РЅР° постоянном СѓСЂРѕРІРЅРµ температуру, давление Рё влажность РІРѕР·РґСѓС…Р° путем компенсации внешних воздействий, некоторые типы силовых полей, согласно РЇРЅРіСѓ Рё Миллсу, обеспечивают компенсацию СЃРґРІРёРіРѕРІ зарядов СЃРёР», сохраняя неизменность физических взаимодействий между частицами. Р’ случае калибровочной симметрии, связанной СЃРѕ СЃРґРІРёРіРѕРј цветовых зарядов кварков, требуемая сила представляет СЃРѕР±РѕР№ РЅРµ что РёРЅРѕРµ, как само сильное взаимодействие. Рными словами, если Р±С‹ РЅРµ было сильного взаимодействия, физика могла Р±С‹ измениться РїСЂРё упомянутом выше СЃРґРІРёРіРµ цветовых зарядов. Рто показывает, что хотя гравитационное Рё сильное взаимодействия имеют совершенно различные свойства (РІСЃРїРѕРјРЅРёРј, например, что гравитация гораздо слабее сильного взаимодействия Рё действует РЅР° гораздо больших расстояниях), РѕРЅРё, РІ определенном смысле, имеют общее происхождение: каждое РёР· РЅРёС… необходимо для того, чтобы Вселенная обладала какой-то конкретной симметрией. Более того, аналогичные рассуждения, примененные Рє слабому Рё электромагнитному взаимодействиям, показывают, что РёС… существование также связано СЃ некоторыми видами калибровочной симметрии — так называемой слабой Рё электромагнитной калибровочной симметриями. Таким образом, РІСЃРµ четыре взаимодействия непосредственно связаны СЃ принципами симметрии.
Рта общая характеристика всех четырех взаимодействий, казалось Р±С‹, РіРѕРІРѕСЂРёС‚ РІ пользу предположения, сделанного РІ начале настоящего раздела. Рђ именно, РІ наших попытках объединить квантовую механику Рё общую теорию относительности РјС‹ должны вести РїРѕРёСЃРє РІ направлении квантово-полевой теории гравитационного взаимодействия, следуя примеру успешной разработки квантово-полевых теорий трех РґСЂСѓРіРёС… РІРёРґРѕРІ взаимодействия. РќР° протяжении РјРЅРѕРіРёС… лет эта логика вдохновляла РіСЂСѓРїРїСѓ выдающихся физиков РЅР° разработку такой теории, однако путь Рє ней оказался усеян препятствиями, Рё РЅРёРєРѕРјСѓ РЅРµ удалось пройти его полностью. Попытаемся понять почему.
Общая теория относительности и квантовая механика
Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Рйнштейна, РЅР° этих масштабах отсутствие масс означает, что пространство является плоским, как показано РЅР° СЂРёСЃ. 3.3. Пытаясь объединить общую теорию относительности Рё квантовую механику, РјС‹ должны резко изменить фокусировку Рё исследовать свойства пространства РІ микроскопическом масштабе. РњС‹ продемонстрировали это РЅР° СЂРёСЃ. 5.1 путем последовательного увеличения масштаба Рё перехода Рє уменьшающимся областям пространства. РџРѕ мере того, как РјС‹ увеличиваем масштаб, РЅР° первых порах РЅРµ РїСЂРѕРёСЃС…РѕРґРёС‚ ничего особенного; РјРѕР¶РЅРѕ видеть, что РЅР° первых трех СѓСЂРѕРІРЅСЏС… увеличения РЅР° СЂРёСЃ. 5.1 структура пространства сохраняет СЃРІРѕРё основные свойства. Если подходить СЃ СЃСѓРіСѓР±Рѕ классической точки зрения, РјС‹ могли Р±С‹ рассчитывать РЅР° то, что такая спокойная Рё плоская структура пространства будет сохраняться РІСЃРµ время, вплоть РґРѕ любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является РІСЃРµ — даже гравитационное поле. Хотя классическая теория РіРѕРІРѕСЂРёС‚, что гравитационное поле РІ пустом пространстве равно нулю, квантовая механика показывает, что
92ВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ Часть II. Дилемма пространства, времени Рё квантов
![]() | РРёСЃ.5.1. Рассматривая область пространства РїСЂРё РІСЃРµ большем увеличении, РјРѕР¶РЅРѕ исследовать свойства пространства РЅР° ультрамикроскопическомВВ СѓСЂРѕРІРЅРµ. Попытки объединить общую теорию относительности Рё квантовую механику наталкиваются РЅР° кипящую квантовую пену, проявляющуюся РїСЂРё самом большом увеличении |
оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, ко-
Глава 5. Необходимость РЅРѕРІРѕР№ теории: РћРўРћ versus квантовая механикаВВВВВВВВВВВВВВВВ 93
торую РјС‹ использовали РІ качестве аналогии РІ главе 3. Скорее РѕРЅРѕ принимает вспененную, турбулентную Рё скрученную форму, показанную РІ верхней части СЂРёСЃСѓРЅРєР°. Джон Уилер предложил для описания такого хаоса, обнаруживаемого РїСЂРё изучении ультрамикроскопической структуры пространства (Рё времени), термин квантовая пена' — описывающий незнакомую нам область Вселенной, РІ которой обычные понятия «налево Рё направо», «вперед Рё назад», «вверх Рё РІРЅРёР·В» (Рё даже «до Рё после») теряют СЃРІРѕР№ смысл. Рменно РЅР° таких малых расстояниях РјС‹ сталкиваемся СЃ фундаментальной несовместимостью общей теории относительности Рё квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится РїРѕРґ напором неистовых флуктуации квантового РјРёСЂР°, существующих РІ масштабе ультрамикроскопических расстояний. Р’ ультрамикроскопическом масштабе РѕСЃРЅРѕРІРЅРѕРµ свойство квантовой механики — соотношение неопределенностей — вступает РІ РїСЂСЏРјРѕРµ противоречие СЃ центральным принципом обшей теории относительности — гладкой геометрической моделью пространства (Рё пространства-времени).
РќР° практике этот конфликт проявляется РІ весьма конкретном РІРёРґРµ. Расчеты, основанные РЅР° совместном использовании уравнений общей теории относительности Рё квантовой механики, обычно дают РѕРґРёРЅ Рё тот Р¶Рµ нелепый ответ: бесконечность. РџРѕРґРѕР±РЅРѕ подзатыльнику, полученному РѕС‚ школьного учителя старых времен, бесконечность РІ ответе — это СЃРїРѕСЃРѕР±, СЃ помощью которого РїСЂРёСЂРѕРґР° сообщает, что РјС‹ делаем что-то РЅРµ так, как надо6). Уравнения общей теории относительности РЅРµ РјРѕРіСѓС‚ справиться СЃ безумным хаосом квантовой пены.
Заметим, однако, что РїРѕ мере того, как РјС‹ возвращаемся Рє обычным масштабам расстояний (РїСЂРѕС…РѕРґСЏ последовательность РЅР° СЂРёСЃ. 5.1 РІ обратном РїРѕСЂСЏРґРєРµ), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить РґСЂСѓРі РґСЂСѓРіР°. Р’ результате (точно так Р¶Рµ, как среднее РїРѕ банковскому счету нашего маниакального заемщика РЅРµ обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства РІРЅРѕРІСЊ становится точным. Рто РїРѕС…РѕР¶Рµ РЅР° растровый СЂРёСЃСѓРЅРѕРє РІ РєРЅРёРіРµ или газете: РїСЂРё взгляде издалека точки, образующие СЂРёСЃСѓРЅРѕРє, сливаются Рё создают впечатление гладкого изображения, РІ котором вариации яркости плавно Рё незаметно изменяются РѕС‚ участка Рє участку. Однако если РІС‹ посмотрите РЅР° этот СЂРёСЃСѓРЅРѕРє СЃ более близкого расстояния, РІС‹ увидите, что РѕРЅ совсем РЅРµ так гладок, как выглядит издалека. РќР° самом деле РѕРЅ представляет СЃРѕР±РѕР№ набор дискретных точек, каждая РёР· которых четко отделяется РѕС‚ РґСЂСѓРіРёС…. Однако обратите внимание, что РІС‹ смогли узнать Рѕ дискретности СЂРёСЃСѓРЅРєР°, только рассмотрев его вблизи: издалека РѕРЅ выглядит гладким. Точно так Р¶Рµ Рё структура пространства-времени кажется нам гладкой, Р·Р° исключением тех случаев, РєРѕРіРґР° РјС‹ исследуем ее СЃ ультрамикроскопическим разрешением. Рто объясняет, почему общая теория относительности работает РЅР° достаточно крупных масштабах расстояний (Рё времен), которые свойственны РјРЅРѕРіРёРј типичным астрономическим явлениям, РЅРѕ оказывается непригодной РЅР° микроскопических масштабах пространства (Рё времени). Центральный принцип гладкой Рё слабо искривленной геометрии соблюдается РІ большом масштабе, РЅРѕ нарушается РїРѕРґ действием квантовых флуктуации РїСЂРё переходе Рє микроскопическим масштабам.
Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приве-
94ВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ Часть II. Дилемма пространства, времени Рё квантов
дем такую иллюстрацию: если РјС‹ увеличим атом РґРѕ размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Ртак, РјС‹ РІРёРґРёРј, что несовместимость общей теории относительности Рё квантовой механики проявляется только РІ очень глубоко запрятанном королевстве Вселенной. РЈ читателя может возникнуть РІРѕРїСЂРѕСЃ, стоит ли вообще беспокоиться РїРѕ этому РїРѕРІРѕРґСѓ. Мнение физического сообщества РїРѕ этому РІРѕРїСЂРѕСЃСѓ отнюдь РЅРµ является единым. Есть физики, которые признают существование проблемы, РЅРѕ предпочитают применять квантовую механику Рё общую теорию относительности для решения таких задач, РІ которых типичные расстояния намного превосходят планковскую длину. Есть, однако, Рё РґСЂСѓРіРёРµ ученые, которые глубоко обеспокоены тем фактом, что РґРІР° фундаментальных столпа, РЅР° которых держится здание современной физики, РІ своей РѕСЃРЅРѕРІРµ принципиально несовместимы, Рё неважно, что эта несовместимость проявляется только РЅР° ультрамикроскопическом масштабе расстояний. Несовместимость, РіРѕРІРѕСЂСЏС‚ РѕРЅРё, указывает РЅР° существенный РёР·СЉСЏРЅ РІ нашем понимании физического РјРёСЂР°. Рто мнение основывается РЅР° недоказуемой, РЅРѕ глубоко прочувствованной точке зрения, согласно которой понимание Вселенной РЅР° ее самом глубоком Рё наиболее элементарном СѓСЂРѕРІРЅРµ может дать нам ее логически непротиворечивое описание, РІСЃРµ детали которого Р±СѓРґСѓС‚ находиться РІ гармоничном единстве. Р СѓР¶ точно большинство физиков, независимо РѕС‚ того, какое значение это противоречие имеет для РёС… собственных исследований, согласятся СЃ тем, что РѕСЃРЅРѕРІР° наших самых глубоких теоретических представлений Рѕ Вселенной РЅРµ должна представлять СЃРѕР±РѕР№ математически противоречивое лоскутное одеяло, скроенное РёР· РґРІСѓС… мощных, РЅРѕ конфликтующих теорий.
Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.
Так продолжалось до создания теории суперструн8).