Спор двух профессоров

После превращения в двумерные существа Джордж и Грейс стали профессорами физики во вселенной Садового шланга. Они основали конкурирующие лаборатории, сотрудники каждой из которых вскоре заявили о том, что им удалось определить размер циклического измерения. На удивление, при всей безупречной репутации каждой лаборатории в области высокоточных исследований, результаты оказались разными. Джордж уверен в том, что радиус (в единицах планковской длины) равен R = 10, а Грейс утверждает, что значение радиуса равно R = 1/10.

«Грейс, — говорит Джордж, — мои вычисления по теории струн показывают, что если радиус циклического измерения равен 10, то энергии наблюдаемых мной струн должны соответствовать табл. 10.1. Я провел масштабные эксперименты на новом ускорителе с энергиями порядка планковской, и результаты в точности подтвердили это предположение. Следовательно, я совершенно определенно заявляю, что радиус циклического измерения равен R = 10». В свою очередь, Грейс приводит в защиту своего результата в точности те же доводы, но ее вывод состоит в том, что зарегистрированы значения энергий из табл. 10.2, и радиус, таким образом, равен R = 1/10.

Озаренная проблеском интуиции Грейс демонстрирует Джорджу, что несмотря на разное расположение элементов эти таблицы тождественны. Джордж, который, как всем известно, соображает несколько медленнее Грейс, отвечает: «Но как такое возможно? Я знаю, что, согласно принципам квантовой теории и свойствам намотанных струн, различные значения радиуса должны приводить к разным возможным значениям энергий и зарядов струн. И если эти значения согласуются, то и значения радиуса также должны находиться в согласии».

Грейс, во всеоружии своего нового понимания физики струн, отвечает: «То, что Вы говорите, почти, но не полностью правильно. Да, обычно верно, что для двух различных радиусов получаются различные допустимые энергии. Однако в частном случае, когда два значения радиуса обратно пропорциональны друг другу, например, как 10 и 1/10, допустимые энергии и заряды на самом деле одинаковы. Судите сами: то, что Вы назвали бы колебательной модой, я назвала бы топологической модой. Но природе безразлично, на каком языке мы говорим. Физические явления обусловлены свойствами фундамен-


Глава 10. Квантовая геометрияВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ 165

тальных составляющих — массами (энергиями) частиц и переносимыми ими зарядами. Не имеет значения, равен ли радиус R или 1/R: полный список значений свойств фундаментальных составляющих теории струн один и тот же».

В минуту прозрения Джордж отвечает: «Мне кажется, я понимаю. Хотя мое и Ваше детальное описание струн — их намотка на циклическое измерение или особенности их колебательного поведения — могут отличаться, полный список их физических характеристик одинаков. А так как физические свойства Вселенной зависят от свойств фундаментальных составляющих, нет ни различия между радиусами, которые обратно пропорциональны друг другу, ни способа определить это различие». Именно так.

РўСЂРё РІРѕРїСЂРѕСЃР°

Здесь читатель может спросить: «Будь я существом, живущим на Вселенной Садового шланга, я просто измерил бы длину окружности шланга рулеткой и однозначно определил бы радиус — без всяких „но" и „если". Так к чему вся эта чепуха о невозможности отличить два разных радиуса? Кроме того, разве теория струн не распрощалась с масштабами меньше планковской длины — зачем же эти примеры циклических измерений с радиусами в доли планковской длины? И, если уж на то пошло, кого волнует эта двумерная вселенная Садового шланга? Что все это добавляет к пониманию случая всех измерений?»

Начнем с третьего вопроса; ответ на него поставит нас лицом к лицу с двумя первыми.

Хотя обсуждение касалось вселенной Садового шланга, ограничение одним протяженным и одним циклическим пространственными измерениями было выбрано лишь для простоты. Если бы мы рассматривали три протяженных пространственных измерения и шесть циклических измерений — простейшее из всех многообразий Калаби— Яу, — результат был бы в точности тем же самым. У каждой окружности есть радиус, и если его заменить обратным радиусом, получится физически идентичная вселенная.

Этот вывод можно даже продвинуть на один гигантский шаг вперед. В нашей Вселенной наблюдаемы три пространственных измерения, каждое из которых, согласно астрономическим наблюдениям, имеет протяженность порядка 15 миллиардов световых лет (световой год равен примерно 9,46 триллионам километров, так что это расстояние равно примерно 142 миллиардам триллионов километров). Как отмечалось в главе 8, у нас нет данных о том, что происходит за этими границами. Мы не знаем, уходят ли эти измерения в бесконечность или замыкаются сами на себя, образуя огромные окружности — все это может иметь место за пределами чувствительности современных телескопов. Если справедливо последнее предположение, то путешествующий все время в одном направлении астронавт в конце концов обойдет вокруг Вселенной, как Магеллан вокруг Земли, и прилетит назад в исходную точку.

Следовательно, хорошо знакомые протяженные измерения могут тоже иметь форму окружностей, и поэтому они попадают под действие принципа физической неразличимости пространств с радиусами R и 1/R теории струн. Приведем несколько грубых оценок. Если привычные нам измерения являются циклическими, то их радиусы должны быть, как говорилось выше, около 15 миллиардов световых лет, т.е. примерно R = 1061 в единицах планковской длины, и эти радиусы должны увеличиваться при расширении Вселенной. Если теория струн верна, то картина физически эквивалентна ситуации, в которой привычные нам измерения имеют невообразимо малый радиус порядка 1/R = 1/1061 = 10--61 в единицах планковской длины! И это — хорошо нам знакомые измерения в альтернативном описании по теории струн. На самом деле, на этом взаимном языке эти крошечные окружности будут со временем становиться еще меньше, так как 1/R уменьшается, когда R растет. Кажется, мы основательно сели в лужу. Как такое возможно в принципе? Как двухметровый человек может втиснуться в такую невообразимо микроскопическую вселенную? Как такая невидимая крупинка может быть физически эквивалентной огромным просторам небес?


166ВВВВВВВВВВВВВВВВВВВВВ Часть IV. Теория струн Рё структура пространства-времени

И, более того, здесь сам собой перед нами встает второй вопрос. Считалось, что теория струн налагает запрет на зондирование Вселенной на масштабах, меньших планковской длины. Но если радиус R больше планковской длины, то 1/R с необходимостью меньше нее. Так что же происходит на самом деле? Ответ, который также затрагивает первый из трех поставленных вопросов, выдвигает на первый план важные и нетривиальные свойства пространства и расстояния.