Можно ли теорию струн проверить экспериментально?
Среди многих свойств теории струн, которые мы обсудили в предыдущих главах, возможно, особенно важны три нижеследующих. Во-первых, гравитация и квантовая механика являются неотъемлемыми принципами устройства Вселенной, и поэтому любой проект единой теории обязан включать и то, и другое. В теории струн это реализуется. Во-вторых, исследования на протяжении последнего столетия показали, что существуют и другие ключевые идеи, — многие из которых были проверены экспериментально, — являющиеся центральными для нашего понимания Вселенной. Среди этих идей мы упомянем спин, существование поколений частиц материи и частиц-переносчиков взаимодействия, калибровочную симметрию, принцип эквивалентности, нарушение симметрии и суперсимметрию. Все эти идеи естественным образом вытекают из теории струн. В-третьих, в отличие от более общепринятых теорий, таких, как стандартная модель с ее 19 свободными параметрами, которые могут подгоняться для обеспечения согласия с экспериментом, в теории струн свободных параметров нет. В принципе, ее выводы должны быть совершенно определенными — они должны обеспечить однозначную проверку того, верна теория или нет.
На пути от этого общего теоретизирования к практическому воплощению есть
Глава 15. ПерспективыВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ 247
много препятствий. В главе 9 мы описали некоторые технические преграды, которые и сегодня стоят перед нами, например, определение вида добавочных измерений. В главах 12 и 13 мы рассмотрели эти и другие препятствия в более широком контексте необходимости точного понимания теории струн, которое, как мы видели, естественным образом приводит нас к М-теории. Без сомнения, для достижения полного понимания теории струн/М-теории потребуется очень много работы и столь же много изобретательности.
На каждом этапе исследований в теории струн физики искали и будут продолжать искать экспериментально наблюдаемые следствия теории. Мы не должны терять из виду и более отдаленные возможности для поиска подтверждений теории струн, обсужденные в главе 9. В будущем, по мере углубления нашего понимания, без сомнения будут открыты другие эффекты или свойства теории струн, и они подскажут нам новые пути для косвенного экспериментального подтверждения. Важно отметить, что главной вехой для теории струн могло бы стать подтверждение суперсимметрии после открытия частиц-суперпартнеров, рассмотренных в главе 9. Напомним, что суперсимметрия была открыта в процессе теоретического исследования теории струн, и что это — центральная часть теории. Ее экспериментальное обнаружение могло бы стать убедительным, хотя и косвенным, подтверждением теории струн. Более того, открытие частиц-суперпартнеров могло бы стимулировать новые исследования: важность подтверждения суперсимметрии не исчерпывается лишь выяснением ответа на вопрос о том, имеет ли она отношение к нашему миру. Значения масс и зарядов частиц-суперпартнеров покажут, каким конкретным образом суперсимметрия реализуется в законах природы. Ру теоретиков, занимающихся струнами, будет шанс проверить, допускает ли эта реализация законченную формулировку и объяснение в рамках теории струн. Конечно, с еще большим оптимизмом можно надеяться, что в течение следующих десяти лет, перед тем, как заработает Большой адронный ускоритель в Женеве, прогресс в понимании теории струн будет достаточным для того, чтобы сделать детальные предсказания о суперпартнерах до их ожидаемого открытия. Подтверждение таких предсказаний стало бы моментом фундаментальной важности в истории науки.