Випромінювання оптичного діапазону
Цим терміном позначається випромінювання видимого діапазону хвиль (0,4—0,77 мкм), а також межуючих з ним діапазонів —'• інфрачервоного (ІЧ) з довжиною хвилі 0,77—0.1 мкм та ультрафіолетового (УФ) з довжиною хвилі 0,4—0,05 мкм.
Таким чином, з боку довгих хвиль між оптичним діапазоном та НВЧ лежить маловивчений та поки що маловикористовуваний діапазон субміліметрових хвиль (0—0,1 мм), а з боку коротких хвиль — перехід до рентгенівського випромінювання.
Радіоелектронні прилади, як і будь-які інші, мають ККД менше 100 %, і частина енергії джерел живлення витрачається на покриття втраті та в кінцевому рахунку переходить у тепло, тобто, в ІЧ випромінювання.
Джерелами ІЧ випромінювання є багато елементів та вузлів радіоапаратури — електровакуумні, напівпровідникові та квантові прилади, індуктивності, резистори, трансформатори, з'єднувальні проводи тощо. Аналогічним чином електровакуумні прилади у скляних балонах дають випромінювання у видимій області спектра. Але такого роду випромінювання порівняно малої інтенсивності не викликає помітного екологічного впливу. Це ж стосується і некогерентного УФ випромінювання, яке використовується у технологічному процесі фотолітографії при виробництві мікросхем.
Лазерне випромінювання має ряд особливостей. Воно характеризується великою часовою та просторовою когерентністю — кореляцією (сумісністю) фаз коливань у деякій точці простору на певну величину моменту часу, а також кореляцією фаз коливань у різних точках простору в один і той же момент часу.
Часова когерентність зумовлює монохроматичність (одно-частотність) випромінювання, що випливає із самого принципу дії лазера як квантового прилада. У реальних умовах з ряду причин ширина спектра лазерного випромінювання обмежна, хоча й досить немала.
Просторова когерентність зумовлює високу скерованість лазерного випромінювання, тобто малу кутову розбіжність променя на великих відстанях. У зв'язку із малою довжиною хвилі лазерне випромінювання може бути сфокусоване оптичними системами (лінзами та дзеркалами) невеликих геометричних розмірів, обмежених дифракцією, завдяки чому на малій площі досягається велика густина випромінювання.
Вказані властивості та їх поєднання є основою для широкого використання лазерів. За їх допомогою здійснюється багатоканальний зв'язок на великих відстанях (причому кількість каналів тут у десятки тисяч разів може перевищувати можливості НВЧ діапазону), лазерна локація, дальнометрія, швидке опрацювання інформації.
Вплив лазерного випромінювання на біологічні тканини може призвести до теплової, ударної дії світлового тиску, електрострикції (механічні коливання під дією електричної складової ЕМП), перебудови внутріклітинних структур. Залежно від різних обставин прояв кожного ефекту зокрема чи їх сумарна дія можуть відрізнятися.
При великій інтенсивності і дуже малій тривалості імпульсів спостерігається ударна дія лазерного випромінювання, яка розповсюджується з великою швидкістю та призводить до пошкодження внутрішніх тканин за відсутності зовнішніх проявів.
Найважливішим фактором дії потужного лазерного випромінювання на біологічне середовище є тепловий ефект, який проявляється у вигляді опіку, іноді з глибинним руйнуванням — деформацією і навіть випаровуванням клітинних структур. При менш інтенсивному випромінюванні на шкірі можуть спостерігатися видимі зміни (порушення пігментації, почервоніння) з досить чіткими межами ураженої ділянки. Шкірний покрив, який сприймає більшу частину енергії лазерного випромінювання, значною мірою захищає організм від серйозних внутрішніх ушкоджень. Але є відомості, що опромінення окремих ділянок шкіри викликає порушення у різних системах організму, особливо нервової та серцево-судинної.
У зв'язку з різною поглинальною здатністю живих тканин при відносно слабких ушкодженнях шкіри можуть виникати серйозні ураження внутрішніх тканин — набряки, крововиливи, змертвіння, згортання крові. Результатом навіть дуже малих доз лазерного випромінювання можуть бути такі явища, як майже при НВЧ опроміненні — нестійкість артеріального тиску, порушення серцевого ритму, втома, роздратування. Звичайно, такі порушення зворотні і зникають після відпочинку.
Найсильніше впливає лазерне випромінювання на очі. Тут
найсерйознішу небезпеку становить випромінювання УФ діапазону,
яке може призвести до коагуляції білка, рогівки та опіку слизової
оболонки, що викликає повну сліпоту. Випромінювання видимого
діапазону впливає на клітини сітківки, внаслідок чого настає тимчасова
сліпота або втрата зору від опіку з наступною появою рубцевих ран.
Випромінювання ІЧ діапазону, яке поглинається райдужною
оболонкою, кришталиком та скловидним тілом, більш-менш безпечне,
але також може спричинити сліпоту.
Таким чином, лазерне випромінювання ушкоджує (часом безповоротно) усі структури ока.
Внаслідок лазерного опромінення у біологічних тканинах можуть виникати вільні радикали, які активно взаємодіть з молекулами та порушують нормальний хід процесів обміну на клітинному рівні. Наслідком цього є загальне погіршення стану здоров'я, (як і при впливі іонізаційних випромінювань).
При використанні лазерів 2 та 3 класів необхідно запобігати попаданню випромінювання на робочі місця. Повинні бути передбачені огородження лазерно шкідливої зони, або екранування пучка випромінювання. Для екранів та огорож потрібно вибирати вогнестійкі матеріали, які мають найменший коефіцієнт відбиття на довжину хвилі генерації лазера. Ці матеріали не повинні виділяти токсичні речовини при дії на них лазерного випромінювання. При експлуатації лазерів 2, 3,4 класів треба здійснювати періодичний дозиметричний контроль (не менше одного разу на рік), а також додатково в таких випадках: при надходженні в експлуатацію нових лазерів 2-4 класів, при зміні конструкції засобів захисту, при організації нових робочих місць.
Випромінювання оптичного діапазону. Оптичний діапазон охоплює зону електромагнітного випромінювання, що включає інфрачервоне (ІЧВ), видиме (ВВ) та ультрафіолетове випромінювання (УФВ).
До випромінювання оптичного діапазону належить лазерне випромінювання, що супроводить роботу лазерів, практичне використання яких почалося в другій половинні ХХ століття.
Інфрачервоне випромінювання.Стосовно організму людини джерелом ІЧВ може бути будь-яке тіло, що має температуру понад 36-37 С і чим вищою є ця різниця, тим інтенсивніше буде опромінення.
За фізичною природою ІЧВ являє собою потік часток матерії, що мають хвильові і квантові властивості.
Вплив ІЧВ на організм людини має в основному теплову дію.
Інфрачервона радіація відіграє важливу роль у теплообмінних процесах людини із зовнішнім середовищем.
Ефект дії ІЧВ залежить від довжини хвиль, які обумовлюють глибину їх проникнення. Поглинання і розсіювання променевої енергії залежить як від довжини хвиль, так і від тканин організму.
Шкіряний покрив, завдяки своїм оптичним властивостям, володіє вибірковою характеристикою відбивання й пропускання різних ділянок спектру інфрачервоної радіації. Вплив ІЧВ на організм проявляється як у формі загальних, так і місцевих реакцій.
Більш виражену дію на організм людини має короткохвильова радіація, вона підвищує температуру глибоких тканин, наприклад, тривале опромінення очей веде до помутніння кришталика (професійна катаракта) або інших паталогічних змін у стані центральної нервової системи. Посилюється секреторна діяльність шлунку, підшлункової і слинної залози. У центральній нервовій системі розвиваються процеси гальмування, зменшується нервово-м’язове збудження, знижується загальний обмін речовин.
До важких ушкоджень призводить короткохвильове ІЧВ, яке проходить через мозкову оболонку й пливає на рецептори мозку. Може статися так званий сонячний або тепловий удар.
У працюючих у гарячих цехах послаблюється імунно-біологічний статус організму, знижується загальна його резистентність, електрична чутливість очей, послаблюється умовно рефлекторна реакція судин, що може призвести до тяжких наслідків.
Тепловий ефект дії ІЧВ залежить від : спектра, тривалості й безперервності та інтенсивності потоку, кута падіння променів, поверхні, яка опромінюється, розмірів ділянки організму, виду одягу і т. ін.
З точки зору профілактики важливе значення має механізація важких видів робіт, впровадження дистанційного відкривання і закривання джерел ІЧВ, віддалення працюючих від потужних теплових джерел, зменшення фізичних навантажень, заміна вертикальних печей на тунельні для обпалювання цегли, сушки гончарних трубок, використання теплоізоляції та екранування робочих місць.
При великих теплових навантаженнях найбільш ефективним способом захисту від променевої енергії є водяні завіси, які поглинають теплову інфрачервону радіацію. Суттєве значення має раціональний питний режим, відповідний режим праці з обов’язковими перервами у роботі для відновлення процесів терморегуляції та раціональний спецодяг, що має теплозахисні властивості й відбиває інфрачервону радіацію.
Інтенсивність ІЧВ вимірюють на робочих місцях або в робочій зоні поблизу джерела випромінювання актинометром, а спектральну інтенсивність – інфрачервоними спектрометрами.
У промисловості і побуті набули масового застосування прилади та обладнання, робота яких пов’язана з використанням або утворенням в процесі роботи електромагнітних випромінювань оптичного діапазону, до яких належать електромагнітні коливання з довжиною хвиль від 0,2 мкм до 1000 мкм. Робота персоналу, який обслуговує таке обладнання, а також людей, які знаходяться поблизу нього, пов’язана з дією випромінювань оптичного діапазону на організм людини та потребує рекомендацій щодо захисту від них.
Залежно від довжини хвилі ці випромінювання поділяються на: випромінювання видимого діапазону, інфрачервоні, ультрафіолетові та лазерні (монохроматичні та видимого і суміжних з ним діапазонів)
Використана література
1.http://studentbooks.com.ua/content/view/1336/76/1/6
2. http://www.myshared.ru/slide/1236852/
3. http://pidruchniki.com//bzhd/viprominyuvannya_optichnogo_diapazonu