Сызыты тедеуіні -ін есепте:A)-50 B)-100/2 C)-150/3
Математика
аныталмаан интеграл те:A)
C)
E)
берілген гиперболаны эксцентриситетін тап :A)
- де
функциясыны е лкен мнін табыдар: А) 160/В) 320/2
дербес туындысы:A) 0 E) наты сан
жне
тзулері:B)
брыш жасайдыE) перпендикуляр
атарыны бесінші мшесі:D)4F)
G)О сан
- ні ќандай мнінде андай тмендегі екі жазытыты біріне - бірі перпендикуляр болады:
A) 36 В)
С)
- ні андай мнінде андай тмендегі екі жазытыты біріне - бірі перпендикуляр болады:
A) 36 D)
G)
- ні андай мнінде тмендегі екі жазтыты біріне - бірі перпендикуляр болады:
,
. А) 5 В)10/2 С)
уневерсал ауыстырып олдану арылы табылатын интеграл:B)
C)
E)
,
. А+В матрицасын табу керек:А)
D)
Векторларды скаляр кбейтіндісін табыдар.A) -9 C)-18/2 H)-27/3
=
векторыны модулін тап:B)
C)
= :B)
айын емес функциясы шін
дербес туындысыА) -1В) теріс сан
айын емес функциясы шін
дербес туындысы: А) бтін санВ) 2
аныталан интеграл теA) 1/4 B)0,25 D)2/8
аныталан интеграл те.A) 1/5 B)0,2 E)3/15
аныталан интеграл те:A)
B)
C)
аныталмаан интегралы те:A)
B)
D)
берілген эллипсті эксцентриситетін тап: А) 0,8Ж) 8/10
берілген эллипсті эксцентриситетін тап:E) 0,8 F) 8/10
боланда
функциясыны туындысы
те:A)8 D)
G)
Векторларды скаляр кбейтіндісін табыдар.D)-3 G) H)-9/3
векторларынан ќралан параллелограмны ауданы: А)2 В)4/2 С)6/3
векторларынан ралан параллелограмны ауданы:C)2 E)4/2 H)6/3
Векторларыны скаляр кбейтiндiсiн тапB)8 E)16/2 H)24/3
векторыны модулiн тап. A)
C)
H)
векторыны модулін тап: А)
векторыны модулін тап:A)
векторыны модулін тап:А)
В)
векторыны модулін тапА)
В)
векторыны зындыы те А) 2В)
С)
Векторыны зындыын табыдар. A) 7 D)14/2 G)28/4
Векторыны зындыын табыдар. A)11 B)33/3 C)66/6
Векторыны зындыын табыдар. C)14D)28/2 E)42/3
Векторыны зындыын табыдар. C)25 E)50/2 H)75/3
Векторыны зындыын табыдар.A) 5 C)10/2 G)20/4
Векторыны зындыын табыдар.A) 7 D)14/2 G)28/4
векторыны зындыын табыдар.A)6 B)
C)
Векторыны зындыын табыдар.B)13 D)26/2 H)39/3
векторыны зындыєын табыдар. А)6 В)
С)
гиперболоиды: А) бірдей жарты стермен/В)
сі бойымен созылан/Д) бір уысты
гиперболоидыА)
нктесі арылы тедіВ) бірдей жарты стермен С) оz сі бойымен созылан
Дрежелік атарыны жинатылы радиусы те: D)1 G)2/2 H)8/8
дрежелік атарыны жинатылы радиусын табыыз:C)
D)
G)
дифференциалды тедеуін шешііз: D)
G)
H)
дифференциалды тедеуіні реті те:A)1 C)
E)
дифференциалды тедеуіні реті те: A)1 C)
E)
дифференциалды тедеуіні реті те: D)3 E)
G)
дифференциалды тедеуіні шешімін табыызB)
E)
G)
дифференциалды тедеуіні шешімін табыызB)
D)
E)
дифференциалды тедеуіні шешімін табыыз:A)
D)
E)
дифференциалды тедеуіні шешімін табыыз:A)
F)
G)
дифференциалды тедеуіні шешімін табыыз:D)
E)
H)
Екi нктенi араашытыын тап.A)5 C)10/2 H)15/3
Есептеіз:A) ½ B) C) 0,5
Есептеіз:E) 8/3 G) /3 H) 16/6
жазытыы: А) Ох сінен 2-ге те кесінді ияды В) Оу сінен 3-ке те кесінді иядыД) Ох сінен 2-ге те кесінді ияды
жазытыында жатан нкте А)
жне
векторларыны векторлы кбейтіндісі деп тмендегі шарттарды анааттандыратын
векторларын атайды:B)
векторына да,
векторына да перпендикулярF) зындыы
жне
векторларынан рылан паралелограммны ауданына теG) осы векторлармен реттелген о штік райды
жне
векторлары m - ні ай мнінде перпендикуляр болады?: А)2 В)
С)
жне
векторлары m - ні ай мнінде перпендикуляр болады?:B)2 D)
E)
жне
нктелері арылы тетін тзуді тедеуі: А)
В)
Е)
жне
нктелері арылы тетін тзуді тедеуіЕ)
жне
нктелері берілген.
векторыны зындыы: А) 5В) бтін сан
жне
нктелері берілген.
кесіндісіні ортасыны абсциссасы А) о санС)3,5
жне
тзулері :D) параллельE)
брыш жасайдыF)
баыттаушы векторына ие
жне
тзулері: А) параллельВ)
баыттаушы векторына ие
жне
тзулері: В)
баыттаушы векторына иеС) параллель Е) 00 брыш жасайды
жне
тзулеріні арасындаы брыш табу формуласын крсетііз:A)
B)
C)
жне
тзулеріні арасындаы брыш табу формуласын крсетііз: А)
В)
С)
жне
тзулеріні паралльлелдік шартын крсетііз: А)
В)
С)
жне
тзулеріні паралльлелдік шартын крсетііз:A)
B)
C)
жне
нктелері берілген.
кесіндісіні ортасыны ординатасыА) 0В) бтін сан
жне
тзулері: А) перпендикулярВ) 900 брыш жасайды
интегралын есептеіз:C)
E)
G)
интегралын есептеіз: А)
G)
H)
интегралын табыыз:C)
E)
H)
интегралын табыыз:A)
C)
E)
интегралын табыыз: D)
G)
H)
интегралын табыыз:D)
G)
H)
интегралын табыыз:E)
F)
G)
интегралын табыыз:A)
C)
F)
комплекстік саны мынандай тригонометриялы трде жазылады:A)
B)
E)
Коши есебін шешііз: A)
E)
H)
атарларыны айсысы жинаты атар болады: A) 2 G)4/2 H)8/4
атарыны бесінші мшесі А) о санВ)
С) 4
атарыны бесінші мшесі:А) 4В)
С) о сан
атарыны тоызыншы мшесі А) рационал санВ) о сан С) 9/82
атарыны тоызыншы мшесі:А) рационал санВ) о санЕ)
матрицасы берілген.
алгебралы толытауышты есептеіз: A) 6 В) 18/3 С) 12/2
матрицасыны рангы:C) 1-ден артыD) 3G) 2-ден арты
нктесінде
-ні мні, егер
А) -1
нктесінен
тзуіне дейінгі ашыты неге те.A)3,5 D)7/2 G)35/10
нктесінен
тзуіне дейінгі ашыты неге те. A)3,5 В)7/2 С)35/10
нктесінен
тзуіне дейінгі ашытыты табыыз. A) 1 В)
С)
нктесінен
тзуіне дейінгі ашытыты табыыз. A) 4 В)
С)
параболасымен шектелген фигураны ауданын есептеіз:A)
D)
G)
санды атарыны мшелері: А)
В)
Е)
Санды атарыны мшелері:C)
D)
E)
сферасы шін А)
В) центрі
нктедеС)
нктесі сферада жатыр Ж) центрі
нктеде
сызы тедеуіні
-ін есепте: А) -50 В) -100/2 С) -150/3
сызыты біртекті дифференциалды тедеуіні жалпы шешімін табыыз: A)
C)
G)
сызыты біртекті дифференциалды тедеуіні жалпы шешімін табыыз.A)
C)
F)
сызыты тедеуіні
-ін есепте: А) -75 В)-300/4 С) -150/2
сызыты тедеуіні -ін есепте:A)-50 B)-100/2 C)-150/3