Гипоталамо-гипофизарная система

Единство нервной и гормональной регуляции в организме обеспечивается тесной анатомической и функциональной связью гипоталамуса и гипофиза. Гипоталамо-гипофизарная система определяет состояние и функционирование всей эндокринной системы либо через эндокринную ось: гипота­ламус гипофиз периферические железы (щитовидная, надпочечники, семенники либо яичники), либо через автономную (вегетативную) нервную систему: гипоталамус ве­гетативные центры ствола мозга и спинного мозга вегета­тивные ганглии эндокринные железы и их сосуды. Именно поэтому система получила название "дирижера эндокринно­го оркестра".

Гипофиз расположен в турецком седле основной кости в основании черепа и состоит из передней (аденогипофиз) и зад­ней (нейрогипофиз) долей. Промежуточная доля у взрослого человека рудиментарна. Масса гипофиза составляет всего 0,5 – 0,9 г. С помощью ножки нейрогипофиз анатомически связан с гипоталамусом и получает из него аксоны крупнокле­точных нейронов супраоптического (СОЯ) и паравентрикулярного (ПВЯ) ядер. Аденогипофиз имеет функциональную связь с гипоталамусом через портальную (воротную) систему верхней гипофизарной артерии и через вегетативную иннерва­цию. Ток крови в воротной системе осуществляется от гипота­ламуса к аденогипофизу, в котором находится вторая сеть ка­пилляров и эндокринные клетки-мишени для гипоталамических гормонов. Первая же сеть капилляров находится в сре­динном возвышении гипофизарной ножки. Здесь на сосудах заканчиваются аксоны мелкоклеточных нейронов гипоталаму­са, выделяющие свои гипофизуправляющие гормоны в кровь.

Эффекторные гормоны гипоталамуса и нейрогипофиза. Ими являются вазопрессин и окситоцин. Эти гормоны синте­зируются в крупноклеточных нейронах СОЯ и ПВЯ гипотала­муса, доставляются путем аксонального транспорта в нейрогипофиз и импульсно выделяются в кровь капилляров нижней гипофизарной артерии.

Вазопрессин (АДГ, антидиуретический гормон) –пептид, состоящий из 9 аминокислотных остатков. Его содер­жание в крови составляет 0,5 – 5 нг/мл, имеется суточный ритм секреции с максимумом в ранние утренние часы, транс­портируется в свободной форме, период полураспада 5 – 10 мин. АДГ действует на клетки-мишени через мембранные рецепторы (семейства 7-ТМС-рецепторов) и вторичные по­средники.

Функции АДГ в организме: через V2-рецепторы (вторич­ный посредник цАМФ) в клетках собирательных трубочек по­чек увеличивает реабсорбцию воды, способствует концентри­рованию и уменьшению объема мочи (это явление называется антидиурезом, а гормон, его вызывающий, — АДГ); в больших концентрациях вызывает сужение артерий (отсюда название гормона вазопрессин) через стимуляцию V1-рецепторов глад­ких мышц (внутриклеточные посредники гормона ИТФ (инозитолтрифосфат) и Са2+) и повышение артериального давления крови. АДГ участвует также в формировании мотивации жаж­ды, питьевого поведения и в механизмах памяти.

Синтез и выделение АДГ рефлекторно усиливаются при по­вышении осмотического давления крови более чем на 2% от исходной величины, а также при понижении объема циркули­рующей крови (ОЦК) и/или артериального давления (АД) крови на 6% и более от исходной величины. Гормон ангиотензин II, стресс и физическая нагрузка также усиливают выделе­ние АДГ. Выделение АДГ понижается при уменьшении осмотического давления крови, повышении ОЦК и/или АД, дей­ствии этилового спирта.

Недостаточная функция гормона (малая его секреция или нарушения в рецепторных структурах) проявляется избыточ­ным выделением мочи низкой плотности до 10 – 15 л/сут (за­болевание называется несахарный диабет) и гипогидратацией тканей организма. Избыточная функция гормона проявляется уменьшением диуреза и задержкой воды в организме вплоть до развития клеточных отеков, явлений водной интоксикации и гибели организма.

Окситоцин –пептид, состоящий из 9 аминокислотных остатков. Он транспортируется в свободной форме, период по­лураспада 5 – 10 мин, действует на клетки-мишени через мем­бранные рецепторы (семейства 7-ТМС-рецепторов) и вторич­ные посредники (ИТФ, Са2+).

Функции окситоцина в организме: усиление сокращения матки при родах и в послеродовой период; сокращения миоэпителиальных клеток протоков молочных желез, что вызыва­ет выделение молока при кормлении новорожденных.

Синтез окситоцина увеличивается в конце беременности под влиянием женских половых гормонов эстрогенов, а его выделение усиливается рефлекторным путем при раздраже­нии механорецепторов шейки матки при ее растяжении во время родов, а также при стимуляции механорецепторов со­сков молочных желез во время кормления.

Недостаточная функция гормона проявляется слабостью родовой деятельности матки, нарушением выделения молока.

Эффекторные гормоны гипофиза. Кэффекторным гормо­нам относятся меланоцитстимулирующий гормон (МСГ), пролактин, гормон роста.

Меланоцитстимулирующий гормон (МСГ, интер­медин) является пептидом (состоит из 13 аминокислотных остатков), вырабатывается в промежуточной зоне гипофиза у плода и новорожденных.

У взрослого человека эта зона редуцирована и МСГ выра­батывается очень ограниченно. Его функции в организме взрослого человека выполняет АКТГ и -липотропин. МСГ, АКТГ и -липотропин образуются из общего белка-предшест­венника – проопиомеланокортина.

Функции МСГ в организме: индуцирует синтез фермента тирозиназы и, соответственно, образование меланина; вызывает дисперсию меланосом в клетках кожи, что сопровожаается по­темнением кожи. Избыток АКТГ и -липотропина наблюдается у женщин во время беременности, что приводит к усиленной пигментации естественно пигментированных участков кожи.

Гормон роста (ГР, соматотропин, соматотропный гормон) выделяется в кровь красными ацидофильными соматотрофами (50% от клеток аденогипофиза), является простым белком (состоит из 191 аминокислотного остатка), транспор­тируется в свободной форме, период полураспада – 10 – 20 мин, действует на клетки-мишени через 1 -ТМС-мембранные рецепторы. Выделяют прямое метаболическое действие гормона роста на клетки-мишени и опосредованное анаболи­ческое влияние через регуляцию выделения гормонов соматомединов С и А (инсулиноподобных факторов роста I и II).

Основные функции ГР в организме: усиливает процессы биосинтеза белка, нуклеиновых кислот, роста мягких и твер­дых тканей; облегчает утилизацию глюкозы в тканях; способ­ствует мобилизации жиров из депо и распаду жирных высших кислот; задерживает в организме азот, фосфор, кальций, нат­рий, воду; усиливает синтез и секрецию гормонов соматомединов в печени и хрящевой ткани, инсулина и глюкагона – в поджелудочной железе, способствует превращению тирок­сина (Т4) в трийодтиронин (Т3); повышает основной обмен и способствует сохранению мышечной ткани во взрослом орга­низме.

Синтез и выделение ГР регулируются: 1) гипофизуправляющими гор­монами гипоталамуса – соматолиберином (пептид, усиливающий секре­цию ГР) и соматостатином (пептид, угнетающий синтез и секрецию ГР); 2) циркадными ритмами (максимум содержания гормона в крови прихо­дится на первые два часа сна и в 4 – 6 ч утра); 3) уровнем питательных ве­ществ крови. Гипогликемия, избыток аминокислот и недостаток свобод­ных жирных кислот в крови увеличивают секрецию соматолиберина и ГР. Гормоны кортизол, Т4 и T3 существенно усиливают действие соматоли­берина на соматотрофы.

Избыточная секреция ГР в детском возрасте проявляется резким ускорением роста (более 12см/год) и развитием гиган­тизма у взрослого человека (рост тела у мужчин превышает 2 м, а у женщин – 1,9 м). Пропорции тела сохранены. Гипер­продукция гормона у взрослых людей сопровождается акроме­галией – непропорциональным увеличением отдельных час­тей тела, которые еще сохранили способность к росту. Это приводит к резкому изменению внешности человека, нередко сопровождается развитием сахарного диабета за счет вызыва­емой инсулинрезистентности (снижения количества инсулиновых рецепторов в тканях), а также активации в печени син­теза фермента инсулиназы, разрушающего инсулин.

Недостаточная функция ГР в детском возрасте проявляется резким угнетением скорости роста (менее 4 см/год) при сохра­нении пропорций тела и умственного развития. При этом у взрослого человека отмечается карликовость: рост женщин не превышает 120 см, а мужчин – 130 см, нередко сопровожда­ющаяся половым недоразвитием. Второе название этого забо­левания – гипофизарный нанизм. У взрослого человека недо­статок секреции ГР проявляется снижением основного обме­на, массы скелетных мышц и нарастанием жировой массы.

Пролактин (лактотропный гормон, ЛТГ) выделяет­ся в кровь желтыми лактотрофами (10 – 25% клеток аденогипофиза, а во время беременности их число достигает 70%) аденогипофиза, является простым белком (состоит из 198 аминокислотных остатков), транспортируется в свободной форме, период полураспада – 10 – 20 мин, действует через 1-ТМС-мембранные рецепторы.

Основные функции пролактина в организме: стимулирует развитие железистой ткани в молочной железе, а затем – обра­зование молока (лактоальбумина, жиров и углеводов): способ­ствует формированию материнского инстинкта; подавляет выде­ление гонадотропинов; стимулирует развитие желтого тела и об­разование им прогестерона; участвует в поддержании осмотиче­ского гомеостаза и предупреждении избыточной потери воды и натрия; стимулирует развитие тимуса.

Выделение пролактина регулируется гипофизуправляющими гормонами гипоталамуса дофамином (выполняющим функции пролактостатина и угнетающим секрецию ЛТГ) и пролактолиберином (окончательно не иден­тифицирован, им может быть вазоинтестинальный пептид, тиреолиберин, ангиотензин II или -эндорфин), увеличивающим секрецию, а также сти­мулируется рефлекторным путем с механорецепторов соска молочной же­лезы при акте сосания. Усиливают образование лактотрофов и секрецию ими пролактина плацентарные эстрогены при беременности, а также серотонин и мелатонин, особенно в детском возрасте. Угнетают секрецию про­лактина ФСГ и ЛГ, прогестерон, дофамин, водная нагрузка.

Избыток гормона (гиперпролактинемия) вызывает у жен­щин галакторею (повышенное образование и выделение моло­ка) и гипогонадизм (снижение функции половых желез); у мужчин – импотенцию и бесплодие. Недостаточность пролактина проявляется неспособностью к лактации.

Тропные гормоны гипофиза. Регулируют функции пери­ферических эндокринных желез и клеток, а также неэндокрин­ных клеток.

Тиреотропный гормон (тиреотропин, ТТГ) синтези­руется тиреотрофами, является сложным гликопротеином, действует через мембранные 7-ТМС-рецепторы (вторичный посредник цАМФ).

Основные функции ТТГ: тиреоидное действие, которое за­ключается в стимуляции продукции и секреции Т4 и Т3 (острый эффект), а также в гипертрофии и гиперплазии щитовидной железы (хронический эффект); внетиреоидное действие, про­являющееся повышением образования гликозаминогликанов в коже и подкожной клетчатке.

Секреция ТТГ находится под двойным контролем: 1) со стороны гипоталамического тиреолиберина (ТРГ, тиреорилизинг-гормона, который стимулирует секрецию); 2) перифери­ческих тиреоидных гормонов (Т4 и Т3 тормозят секрецию). Синтез ТТГ угнетается также соматостатином и дофамином, а эстрогены усиливают действие тиреолиберина.

Избыток ТТГ приводит к увеличению размеров щитовид­ной железы (зоб), ее гиперфункции (при достаточном количе­стве йода) с эффектами избытка тиреоидных гормонов (тахи­кардия, повышение основного обмена и температуры тела, пу­чеглазие и др.). Недостаток ТТГ ведет к быстрому или посте­пенному развитию гипотериоза: возникают сонливость, вялость, адинамия, брадикардия и др.

Гонадотропины: ФСГ (фолликулостимулирующий гор­мон, или фоллитропин) и ЛГ (лютеинизирующий гормон, или лютропин) вырабатываются в одних и тех же базофильных клетках (гонадотрофах) аденогипофиза, регулируют у мужчин и женщин активность и развитие половых желез, являются сложными гликопротеинами, действуют через мембранные 7-ТМС-рецепторы (вторичный посредник цАМФ). Во время беременности ФСГ и ЛГ могут вырабатываться в плаценте.

Основные функции гонадотропинов в женском организме: созревание первичного фолликула и увеличение концентрации эстрадиола в крови под влиянием возрастающего уровня ФСГ в течение первых дней менструального цикла: пик ЛГ в сере­дине цикла служит непосредственной причиной разрыва фол­ликула и превращения его в желтое тело. Латентный период со времени пика ЛГ до овуляции составляет от 24 ч до 36. ЛГ является ключевым гормоном стимуляции и образования эстро­генов и прогестерона в яичниках.

Регуляция выделения ФСГ и ЛГ осуществляется гипоталамическим гормоном люлиберином, который стимулирует их выделение, но в первую очередь ФСГ. Увеличение содержания эстрогенов в определенные дни цикла стимулирует выделение ЛГ (положительная обратная связь). Затем совместно дей­ствующие эстрогены и прогестины тормозят выделение люлиберина, ФСГ и ЛГ. У детей тормозит выделение гонадотропинов гормон эпифиза – мелатонин. Пролактин также тормозит выделение ФСГ и ЛГ.

Недостаток ФСГ и ЛГ сопровождается изменениями или прекращением менструального цикла. У кормящих матерей эти изменения цикла могут быть весьма выражены из-за высо­кого уровня пролактина.

Функции гонадотропинов в мужском организме: ФСГ спо­собствует росту яичек, стимулирует клетки Сертоли и спо­собствует формированию в них андрогенсвязывающего белка, а также увеличивает выработку этими клетками полипептида ингибина, который снижает секрецию ФСГ и люлиберина; ЛГ стимулирует созревание и дифференцировку клеток Лейдига, а также синтез и секрецию этими клетками тестостерона; сов­местное действие ФСГ, ЛГ и тестостерона упорядочивает сперматогенез.

Секреция гонадотропинов у мужчин регулируется люлибе­рином (активация), свободным тестостероном (угнетение) и ингибином (угнетение). Тестостерон как ингибитор не акти­вен, но в клетках аденогипофиза и нейронах гипоталамуса он превращается в дигидротестостерон или эстрадиол, которые и тормозят выделение гонадотропинов и люлиберина.

Адренокортикотропный гормон (кортикотропин, АКТГ)синтезируется кортикотрофами аденогипофиза. явля­ется пептидом (состоит из 39 аминокислотных остатков, пер­вые 13 из которых полностью повторяют структуру -МСГ), действует через мембранные 7-ТМС-рецепторы (вторичный посредник цАМФ), период полураспада – до 10 мин.

Физиологические эффекты АКТГ подразделяют на надпочечниковые и вненадпочечниковые. Так. АКТГ стимулирует рост и развитие пучковой и сетчатой зон в коре надпочечников, а также синтез и выделение гормонов: глюкокортикоидов (кортизола и кортикостерона из пучковой зоны) и в меньшей степени половых (в основном андрогенов из сетчатой зоны). В незначительной степени АКТГ также стимулирует выделе­ние альдостерона из клубочковой зоны коры надпочечников. Вненадпочечниковое влияние АКТГ – это непосредственное действие гормона на неэндокринные органы: а) липолитическое – на жировую ткань; б) повышение секреции инсулина и гормона роста; в) развитие гипогликемии из-за стимуляции секреции инсулина; г) усиление пигментации кожи вследствие увеличения образования меланина.

Секреция АКТГ регулируется тремя основными механиз­мами. Во-первых, эндогенным ритмом выделения кортиколиберина гипоталамусом (максимум утром – 6 – 8 ч, минимум ночью – 22 – 23 ч). Во-вторых, стрессорным выделением кортиколиберина при действии на организм сильных раздражите­лей (холод, боль, физическая нагрузка и др.). В-третьих, меха­низмом отрицательной обратной связи. Гормон перифериче­ской эндокринной железы кортизол тормозит выделение тропного гормона гипофиза АКТГ и гипофизуправляющего гормона гипоталамуса кортиколиберина.

Избыток АКТГ отмечается в норме при беременности, а так­же при первичной или вторичной (после удаления надпочечни­ков) гиперфункции кортикотрофов гипофиза и проявляется ги­перпигментацией кожи. Дефицит АКТГ ведет к недостаточности секреции глюкокортикоидов из коры надпочечников, что сопро­вождается выраженными метаболическими нарушениями и снижением устойчивости организма к влияниям среды.

Вместе с АКТГ из общего предшественника (проопиомеланокортина) образуются - и -МСГ, а также и -липотропины. Липотропины активируют липолиз. Кроме того, из них об­разуются эндогенные морфиноподобные пептиды эндорфины и энкефалины. Эти пептиды являются важными компонентами антиноцицептивной (противоболевой) системы мозга.

 

Щитовидная железа

 

Щитовидная железа – это типичный эндокринный ор­ган эпителиального происхождения. У взрослого человека она состоит из двух долей, соединенных перешейком, и располагается на шее кпереди и книзу от хрящей гортани. Ее масса со­ставляет 15 – 25 г. Фиброзные перегородки делят железу на псевдодольки, которые в свою очередь состоят из замкнутых железистых пузырьков (фолликулов, ацинусов), окруженных сетью капилляров. Стенки фолликула образованы эпители­альными фолликулярными клетками кубической формы. Нор­мальная функция этих клеток заключается в синтезе белка тиреоглобулина и секреции активных йодсодержащих тиреоидных гормонов – 3,5,3',5'-тетрайод-L-тиронина (L-тироксина, Т4) и 3,5,3'-трийод-L-тиронина (Т3). Просвет фолликула заполнен белковым материалом – коллоидом, который содер­жит специфический для щитовидной железы белок тиреоглобулин, ответственный за синтез и накопление Т4 и Т3. В щи­товидной железе имеется и другая популяция клеток – парафолликулярных К-клеток. Они служат источником кальцийрегулирующего гормона кальцитонина. Щитовидная железа обильно кровоснабжается (до 5 мл крови на 1 г), занимая по этому показателю первое место в организме, и густо иннервируется сетью нервных симпатических и парасимпатических волокон.

Динамика тиреоидных гормонов. Динамика тиреоидных гормонов подразумевает комплекс процессов синтеза гормо­нов (Т4 и Т3), их транспортировки, действия на клетки-мишени, метаболизма в периферических тканях, а также совокуп­ность регуляторных механизмов, определяющих нормальное обеспечение тканей тиреоидными гормонами.

Структура, синтез и секреция, транспортировка и механизм действия гормонов. По своей структуре Т4 и Т3 являются йодированными производными аминокислоты L-тирозина. Синтез Т4 и Т3 зависит от поступления в фолликуляр­ные клетки щитовидной железы достаточного количества йода.

Йодирование структур свежесинтезированного тиреоглобулина с образованием моно- и дийодтирозинов происходит на границе между клет­кой и коллоидом. Конденсация йодтирозинов с образованием Т4и Т3 про­исходит внутри тиреоглобулина, большая часть которого хранится в кол­лоиде фолликулов, выполняя роль запасной формы (на 2 – 3 месяца) тиреоидных гормонов или «прогормона». Секреция активных форм гормонов происходит в результате пиноцитоза фолликулярного коллоида с последующим гидролизом тиреоглобулина в фаголизосомах и выделе­нием свободных йодтиронинов Т4 и T3 в кровь.

Ежесуточно секретируется около 300 мкг тиреоидных гор­монов. Фолликулярные клетки щитовидной железы являются единственным источником эндогенного Т4. В отличие от этого 80% Т3 образуется во внетиреоидных тканях путем дейодизации Т4. Активность Т3 в 4 – 10 раз выше, а содержание в крови значительно ниже, чем тироксина.

В крови оба гормона почти полностью связаны (Т4 – на 99,97% и Т3 – на 99,70%) с белками плазмы из группы альфа-глобулинов (Т4- или Т3-связывающий глобулин) и альбуминов (Т4-связывающий преальбумин и альбумин). Поэтому период их полураспада составляет сутки для Т3 и неделю для Т4. Ткани ис­пользуют только свободный, не связанный с белками, гормон.

Метаболизм тиреоидных гормонов сводится к последовательному удалению каждого атома йода (монодейодированию) в клетках-мишенях (при этом из Т4 может образовываться как активный Т3, так и неактив­ный реверсивный – 3,3',5'-трийод-L-тиронин), конъюгированию с глюкуроновой кислотой или сульфатом в печени и экскреции с желчью (с целью предотвращения чрезмерного насыщения крови Т Т3).

Механизмы действия тиреоидных гормонов обусловлены их влияни­ем на внутриклеточные (ядерные и цитоплазматические) рецепторы ядра (изменяя экспрессию генома), митохондрий (влияя на окислительный об­мен) и других органелл (рибосом, эндоплазматической сети, цитоскелета, сократительных элементов), а также, по-видимому, и на мембранные рецепторы плазматической мембраны (для регуляции потока субстратов и катионов в клетку и из нее).

Роль тиреоидных гормонов. Они влияют на рост и со­зревание тканей, общие энергозатраты и кругооборот практи­чески всех субстратов (белков, липидов, углеводов, нуклеино­вых кислот), витаминов и гормонов, включая и сами тиреоидные гормоны. Выделяют метаболические и физиологические эффекты тиреоидных гормонов.

Метаболические эффекты: 1) усиление поглощения кисло­рода тканями с активацией окислительных процессов и увели­чением основного обмена; 2) стимуляция синтеза белка (ана­болическое действие); 3) усиление окисления жирных кислот и снижение их уровня в крови; 4) гипергликемия за счет активации гликогенолиза в печени.

Физиологические эффекты: 1) обеспечение нормальных процессов роста, развития и дифференцирования клеток, тка­ней и органов, в том числе ЦНС (миелинизация нервных воло­кон, дифференцирование нейронов), а также процессов физиологической регенерации тканей; 2) активация симпатических влияний (тахикардия, потливость, сужение сосудов и т.д.); 3) повышение теплообразования и температуры тела; 4) повы­шение возбудимости ЦНС и активации психических процес­сов; 5) поддержание нормальной половой жизни и репродук­тивной функции (способствуют синтезу ГР, ФСГ и ЛГ); 6) раз­витие мышечной системы, увеличение силы и скорости мы­шечных сокращений.

Образование и секреция тиреоидных гормонов.Ре­гулируется гуморальными и нервными механизмами. Гумо­ральные механизмы. 1) ТТГ (тиреотропный гормон) гипофиза стимулирует продукцию и секрецию Т3 и Т4, а также рост фол­ликулярной ткани щитовидной железы. Секреция ТТГ усили­вается тиреолиберином гипоталамуса. Секреция ТТГ угнета­ется высоким уровнем Т4 в крови; 2) концентрация йодида в крови и в щитовидной железе влияет на синтез гормонов (ма­лые концентрации йодида стимулируют, а большие – тормозят гормонопоэз). Минимальная суточная потребность в йоде со­ставляет около 80 мкг, оптимальная – в два раза больше. При недостатке йода может развиться эндемический зоб из-за нехватки Т4 и усиления действия ТТГ на паренхиму щитовидной железы. Нервные механизмы регуляции активности щито­видной железы осуществляются как через автономную нерв­ную систему (АНС), так и через выделение нейрогормона тиреолиберина мелкоклеточными нейронами гипоталамуса. Установлено, что стимуляция симпатического отдела АНС приводит к повышению, а возбуждение парасимпатического отдела АНС – к торможению гормонообразовательной функ­ции фолликулярных клеток щитовидной железы.

Проявления нарушений эндокринной функции щи­товидной железы. При повышении функциональной актив­ности щитовидной железы и избыточной продукции тиреоид­ных гормонов возникает состояние гипертиреоза, или тирео­токсикоза. Оно проявляется усилением основного обмена (ги­перметаболизмом) и температуры тела; повышением тонуса симпатического отдела АНС (тахикардия, потливость, непере­носимость тепла и др.); уменьшением массы тела, несмотря на сохраненный или повышенный аппетит; повышением возбуди­мости, эмоциональной лабильностью; бессонницей. Недоста­точная продукция тиреоидных гормонов приводит к развитию гипотиреоза, главной особенностью которого является сниже­ние метаболизма. Тяжелый гипотиреоз обозначают термином «микседема» – слизистый отек. Он происходит из-за накоп­ления мукополисахаридов в базальных слоях кожи под влияни­ем ТТГ и задержки воды, что приводит к одутловатости лица и тестообразной консистенции кожи, а также к повышению мас­сы тела, несмотря на снижение аппетита. У больных микседемой отмечается психическая и двигательная заторможенность, сонливость, зябкость, снижение интеллекта (тупое выражение лица) и активности симпатического отдела АНС и др. Гипоти­реоз в детском возрасте может привести к кретинизму – физи­ческому (малый рост, нарушение пропорций тела), половому и умственному недоразвитию.

Эндокринная функция парафолликулярных К-клеток щитовидной железы. Парафолликулярные К-клетки щито­видной железы синтезируют гормон кальцитонин.

Кальцитонин (тиреокальцитонин) – пептид, состоя­щий из 32 аминокислотных остатков, транспортируется в сво­бодной форме, действует на 1-ТМС- и 7-ТМС-мембранные рецепторы (посредники цГМФ и цАМФ) клеток-мишеней. Может синтезироваться в тимусе, легких, ЦНС.

Физиологическое назначение кальцитонина – сниже­ние уровня кальция (Са2+) и фосфатов в крови за счет: 1) об­легчения минерализации (стимуляция клеток остеобластов и отложения Са2+ и фосфатов в костях) и подавления резорбции (угнетение остеокластов и торможение выведения Са2+ и фос­фатов из костной ткани); 2) снижения реабсорбции Са2+ и фосфатов из первичной мочи в почечных канальцах.

В регуляции секреции кальцитонина ведущую роль играет уровень Са2+ в крови, который в норме составляет 2,25 – 2,75ммоль/л (9 – 11 мг %). Гиперкальциемия (увеличение Са2+ в крови) вызывает активную секрецию кальцитонина. Медиатор симпатического отдела АНС норадреналин через -адренорецепторы повышает, а через -адренорецепторы – понижает секрецию кальцитонина.

 

Паращитовидные железы

Паращитовидные (паратиреоидные, или околощито­видные, железы)имеют форму овальных телец и массу от 0,05 до 0,3 г. Их расположение и число индивидуальны. У большинства людей имеется четыре паращитовидные железы (две верхние и две нижние), которые располагаются в рыхлой клетчатке между пищеводом и щитовидной железой. Основным гормоном является паратирин (паратиреоидный гормон (ПТГ), или паратгормон). ПТГ относится к кальцийрегулирующим гор­монам.

Структура, транспорт, механизм действия гормо­на. ПТГ – пептид, состоящий из 84 аминокислотных остатков. Транспортируется в свободной форме, период полураспада – до 20 мин, действует на клетки мишени через 7-ТМС-мембранные рецепторы (внутриклеточный посредник – цАМФ).

Физиологическое назначение ПТГ. ПТГ повышает содер­жание Са2+ в крови за счет специфического действия на костную ткань, почки и кишечник. Действие гормона на костную ткань за­висит от его концентрации: физиологические концентрации уси­ливают процессы новообразования и минерализации кости, вы­сокие — дают катаболический (остеолитический) эффект. В поч­ках ПТГ усиливает выделение фосфатов в проксимальных канальцах нефрона (вызывая фосфатурию) и увеличивает в дистальных канальцах реабсорбцию Са2+, а также стимулирует синтез активной формы витамина D3[ l,25(OH)2D3] – гормона кальцитриола. На кишечник ПТГ действует через кальцитриол, усиливая всасывание Са2+ и фосфатов. Таким образом, ПТГ ре­гулирует уровень С2+ по трем основным механизмам: 1) умень­шение экскреции Са2+ с мочой; 2) усиление поглощения Са2+ из кишечника; 3) при недостаточности первых двух факторов – ускорение метаболического разрушения костной ткани.

Регуляция секреции ПТГ. Осуществляется по механизму обратной связи уровнем ионизированного Са2+ крови. Гипокальциемия (уменьшение Са2+ в крови) и симпатические вли­яния через -адренорецепторы стимулируют продукцию ПТГ. Гиперкальциемия и гормон почек кальцитриол (активная фор­ма витамина D3) подавляют секрецию ПТГ.

Проявления нарушения функции паращитовидных желез. Избыточная продукция ПТГ у человека приводит к ре­зорбции и деминерализации костей, что сопровождается тяже­лыми переломами позвоночника или головки бедренной кости; гиперкальциемией и отложением камней в почках; мышечной слабостью. Недостаточное выделение или отсутствие ПТГ (на­пример, после удаления паращитовидных желез) вызывает гипокальциемию и резкое повышение нервно-мышечной возбу­димости вплоть до развития судорожных приступов (тетании) и гибели организма.

 


Шишковидная железа

Эпифиз, или шишковидная железа, – непарная срав­нительно мало изученная эндокринная железа нейроглиального происхождения, расположенная в каудальной части III же­лудочка головного мозга в борозде между передними бугорка­ми четверохолмия. Иногда она имеет форму сосновой шишки (отсюда ее название – шишковидная железа), чаще бывает округлой формы. Масса железы у новорожденных 8 мг, у детей с 10 – 14 лет и у взрослых – 120 мг. Особенностями крово­снабжения эпифиза являются большая скорость кровотока и отсутствие гематоэнцефалического барьера. Иннервируется эпифиз симпатическими нервами, идущими от верхних шейных ганглиев.

Эндокрннную функцию выполняют пинеалоциты, которые могут синтезировать и секретировать в кровь и ликвор гормон мелатонин. Предполагают, что пинеалоциты могут синтезировать гормоны и иной (например, пептидной) структуры.

Структура, транспорт, механизм действия мелатонина.Мелатонин является производным аминокислоты триптофана (триптофан 5-гидрокситриптофан 5-гидрокситриптамин (серотонин)/ ацетилсеротонин мелато­нин), транспортируется в свободной форме, период полурас­пада – 2 – 5 мин, действует через 7-ТМС-мембранные рецепторы и систему внутриклеточных посредников. Кроме пинеалоцитов эпифиза мелатонин активно синтезируется в эндокринных клетках (апудоцитах) желудочно-кишечного тракта и других клетках, секреция которых на 90% определяет его содержание в общей циркуляции.

Основные физиологические эффекты мелатонина: 1) обеспечивает регуляцию биоритмов эндокринных функций и метаболизма для приспособления организма к разным усло­виям освещенности; 2) ингибирует синтез и секрецию люлиберина гипоталамуса и гонадотропинов (ФСГ и ЛГ), а также мо­дулирует секрецию других гормонов аденогипофиза; 3) акти­вирует гуморальный и клеточный иммунитет; 4) обладает противоопухолевой активностью и является радиопротектором; 5) оказывает диуретическое действие на почки; 6) является ан­тагонистом МСГ и изменяет (осветляет) окраску кожи и чешуиу земноводных и рыб (отсюда название гормона – мелатонин). У человека на пигментацию кожи он не влияет.

Синтез и секреция мелатонина в шишковидной же­лезе. Подчинены четкому околосуточному (циркадному) ритму и зависят от уровня освещенности. Основной путь регуляции секреции мелатонина начинается от


сетчатки глаза, восприни­мающей уровень освещенности. Информация о нем передает­ся по проводящим путям к нейронам среднего и промежуточ­ного мозга и от них – к преганглионарным симпатическим нейронам спинного мозга и ганглионарным нейронам верхних шейных ганглиев симпатических стволов, формирующих шишковидный нерв. Снижение освещенности повышает выде­ление из симпатических окончаний медиатора норадреналина, который через -адренорецепторы стимулирует синтез и сек­рецию мелатонина.

 

Физиология надпочечников

Надпочечники – парные эндокринные железы, располо­женные у верхних полюсов почек и состоящие из двух разных по эмбриональному происхождению тканей: коркового (про­изводное мезодермы) и мозгового (производное эктодермы) вещества. Каждый надпочечник имеет массу в среднем 4 – 5 г. В железистых эпителиальных клетках коры надпочечников вырабатывается более 50 различных стероидных соединений (стероидов). В мозговом веществе, называемом также хромаффинной тканью, синтезируются катехоламины: адреналин и норадреналин. Надпочечники обильно кровоснабжаются и имеют развитую нервную сеть, начинающуюся от солнечного и надпочечникового сплетений. В них имеется воротная система сосудов. Первая сеть капилляров располагается в коре надпо­чечников, а вторая – в мозговом веществе (кортизол контро­лирует синтез в хромаффинных клетках фермента фенилэтаноламин-N-метилтрансеразы, необходимого для образования адреналина из норадреналина).

Кора надпочечников. Занимает по объему 80% всей желе­зы и состоит из трех клеточных зон. Наружная клубочковая зо­на образует минералокортикоиды; средняя (самая большая) пучковая зона синтезирует глюкокортикоиды; внутренняя (окру­жающая мозговой слой) сетчатая зона продуцирует половые стероиды – как мужские, так и женские независимо от пола человека. Кора надпочечников служит единственным источни­ком глюко-и минералокортикоидов в организме.

Минералокортикоиды (альдостерон, 11 – дезоксикортикостерон) являются жизненно важными гормонами. По­сле удаления надпочечников гибель организма связана с нехват­кой этих гормонов, и смерть можно предотвратить только путем их введения. У человека важнейшим и наиболее активным минералокортикоидом является альдостерон.

Альдостерон – гормон стероидной структуры, синтезиру­емый из холестерола или ацетилкоэнзима А. Суточная секре­ция гормона составляет в среднем 50 – 250 мкг, содержание в крови 50 – 150 нг/л. Альдостерон слабо связывается белками и транспортируется как в свободной (50%), так и связанной (50%) форме. Период его полураспада составляет около 15 мин. Метаболизируется печенью и частично выводится с мочой. За один пассаж через печень инактивируется 75% альдостерона, присутствующего в крови.

Альдостерон действует на специфические внутриклеточные цитоплазматические рецепторы. Образующиеся гормон-рецепторные комплексы проникают в ядро клетки и, связываясь с ДНК, регулируют транскрипцию определенных генов. Это стимулирует образование специфических информационных РНК, которые влияют на синтез белков и ферментов, регули­рующих, например, поступление ионов в клетку.

Физиологическое значение альдостерона заключается в регуляции водно-солевого гомеостаза (изоосмии) и реакции среды (рН).

Гормон усиливает синтез Na-K-АТФазы в клетках дистальных канальцев почек; это ведет к усиленной реабсорбции на­трия и секреции в просвет канальцев ионов калия или водоро­да. Такое же действие альдостерон оказывает на энтероциты и железистые клетки потовых желез. Таким образом, под его влиянием в организме происходит задержка натрия, хлоридов и воды и увеличивается объем циркулирующей крови и артериальное давление крови, а также усиливается выведение Н+-ионов и аммония и формируется сдвиг кислотно-основно­го состояния крови в щелочную сторону.

Кроме того, минералокортикоиды усиливают реакции им­мунной системы и воспаление, а также повышают тонус и ра­ботоспособность мышц.

Регуляция синтеза и секреции альдостерона осущест­вляется несколькими механизмами: главный из них – ангиотензиновый. Это дало основание считать альдостерон частью ренин-ангиотензин-альдостероновой системы (РААС). Ренин (белок, фермент) образуется в юкстагломерулярных клетках почки, его синтез и секреция регулируются содержанием калия и натрия в крови и влиянием катехоламинов через -адренорецепторы. Ренин катализирует отщепление от ангиотензиногена (2-глобулин крови, синтезируемый печенью) пептида из 10 аминокислотных остатков – ангиотензина I, который затем превращается в сосудах легких под влиянием конвертазы в ангиотензин II (пептид из 8 аминокислотных остатков). Ангиотензин II является мощным сосудосужающим фактором и стимули­рует в надпочечниках синтез и выделение альдостерона.

Повышают продукцию альдостерона также высокое содер­жание калия и низкое натрия в плазме крови и в меньшей сте­пени – действие АКТГ гипофиза.

Избыток натрия и недостаток калия в плазме крови, гиперволемия (увеличение объема циркулирующей крови) и действие атриопептидов (гормонов, синтезируемых типичными кардиомиоцитами предсердий) снижают секрецию альдостерона.

Избыточная секреция альдостерона может приводить: к за­держке натрия, хлора и воды и потере калия и водорода; развитию алкалоза с гипергидратацией и появлением отеков; гиперволемии и гипертензии (повышению артериального давления крови). При недостаточной секреции альдостерона развивается потеря натрия, хлора и воды, задержка калия и метаболический ацидоз, дегидра­тация, падение артериального давления и шок, а при отсутствии заместительной терапии – происходит гибель организма.

Глюкокортикоидысинтезируются в клетках пучковой зоны коры надпочечников, затем попадают в кровь. Основным представителем является кортизол.

Кортизол – гормон стероидной структуры, производное холестерола. Его суточная секреция составляет в среднем 15 – 30 мг, содержание в крови – около 150 мкг/л. Кортизол хоро­шо связывается с белками крови (транскортином и альбуми­ном) и транспортируется в связанной (95%) и свободной (5%) форме, период его полураспада составляет около 1 – 2 ч. Метаболизируется печенью и частично выводится с мочой.

Кортизол действует на специфические внутриклеточные цитоплазматические рецепторы. Образующиеся гормон-рецепторные комплексы проникают в ядро клетки и, связываясь с ДНК, регулируют транскрипцию определенных генов и обра­зование специфических информационных РНК, влияющих на синтез очень многих белков и ферментов.

Физиологическое значение кортизола заключается в ре­гуляции межуточного обмена. Выделяют метаболические и не­метаболические эффекты глюкокортикоидов.

Основные метаболические эффекты: 1) стимуляция глюконеогенеза за счет усиления активности и повышения синтеза ключевых ферментов глюконеогенеза, гипергликемия и уси­ление синтеза гликогена в печени; 2) усиление гидролиза бел­ков до аминокислот (катаболическое действие) в опорных тка­нях (костях, скелетных мышцах, коже), исключая печень, где наблюдается усиление синтеза белков; 3) ускорение липолиза и повышение содержания жирных кислот в крови; 4) усиление секреции инсулина из-за гипергликемии и более интенсивное отложение жира в верхней половине тела, жировые депо кото­рых имеют большую чувствительность к инсулину, чем к кортизолу (ожирение при синдроме Иценко – Кушинга).

Основные неметаболические системные эффекты: 1) учас­тие в формировании стресса и повышение устойчивости орга­низма к действию экстремальных раздражителей (поэтому глюкокортикоиды называют адаптивными гормонами). При их отсутствии сильный стресс может вызывать падение давления крови, шок и смерть: 2) сенсибилизация вазомоторной систе­мы к действию катехоламинов (выход -адренорецепторов из цитоплазмы на клеточную мембрану гладких миоцитов и уве­личение их синтеза в клетках) и положительное инотропное действие (увеличение силы сердечных сокращений); 3) повы­шение кровотока в клубочках и увеличение фильтрации, сни­жение реабсорбции воды (в физиологических дозах кортизол является функциональным антагонистом АДГ). При недостат­ке кортизола могут возникать отеки из-за усиления действия АДГ и задержки воды в организме; 4) повышение минералокортикоидной активности (большие дозы глюкокортикоидов задерживают натрий, хлор и воду и способствуют выведению калия и водорода из организма); 5) проявление стимулирую­щего действия на скелетную мускулатуру. При недостатке гор­мона развивается мышечная слабость из-за неспособности со­судистой системы адекватно реагировать на повышение мы­шечной активности. При избытке гормонов - атрофия мышц из-за катаболического действия гормонов; 6) возбуждающее действие на ЦНС и увеличение склонности к судорогам; 7) по­вышение восприимчивости органов чувств к действию специ­фических раздражителей: вкусовых, обонятельных и звуко­вых; 8) подавление клеточного и гуморального иммунитета, инволюция тимуса и лимфатических узлов, прямое цитолити- ческое действие на лимфоциты и эозинофилы, антиаллерги­ческая активность; 9) жаропонижающее и противовоспали­тельное действие за счет угнетения синтеза простагландинов и стабилизации клеточных мембран (антиоксидантная актив­ность гормонов); 10) изъязвление слизистой оболочки желуд­ка и двенадцатиперстной кишки (в больших дозах); 11) повышение чувствительности остеокластов к действию паратгормона и развитие остеопороза; 12) повышение синтеза гормона роста, адреналина, ангиотензина II.

Регуляция синтеза и секреции глюкокортикоидов осу­ществляется АКТГ аденогипофиза с участием кортиколиберина гипоталамуса и имеет четкие суточные ритмы: максимум – ут­ром и минимум – вечером и ночью. Стресс (физический или психический), гипогликемия, лихорадка являются мощными стимулами повышения активности гипоталамо-гипофизарнонадпочечниковой эндокринной оси и увеличения уровня кортизола крови. По механизму отрицательной обратной связи кор­тизол подавляет секрецию кортиколиберина и АКТГ.

Избыточная секреция глюкокортикоидов проявляется на­растанием массы тела и перераспределением жировых депо в виде ожирения лица (лунообразное лицо) и верхней половины тела. Задержка натрия, хлора и воды вследствие минералокортикоидного действия кортизола сопровождается гипертензией и головными болями, жаждой и полидипсией, а также гипокалиемией и алкалозом. Кортизол вызывает также угнетение им­мунной системы из-за инволюции тимуса, цитолиза лимфоци­тов и эозинофилов, снижения функциональной активности других видов лейкоцитов. При этом наблюдается усиление ре­зорбции костной ткани и образование язв на слизистой желуд­ка. Недостаточная секреция кортизола проявляется общей и мышечной слабостью из-за нарушений углеводного и электро­литного обмена, уменьшением массы тела за счет снижения аппетита, тошноты, рвоты и развития дегидратации организ­ма. Она сопровождается избыточным выделением АКТГ из ги­пофиза и гиперпигментацией, а также артериальными гипотониями, гиперкалиемией, гипонатриемией, гипогликемией, гиповолюмией, эозинофилией и лимфоцитозом.

Половые гормоны. Синтезируются в надпочечниках. Клетки сетчатой зоны коры надпочечников секретируют в кровь преимущественно мужские половые гормоны (прежде всего, дегидроэпиандростендион и его эфиры, андрогенная ак­тивность которых существенно ниже, чем у тестостерона) и в меньшей мере – женские половые гормоны (прогестерон, 17б-прогестерон и др.).

По структуре половые гормоны являются стероидными со­единениями, циркулируют в крови в свободной (20%) и свя­занной (80%) форме, действуют через внутриклеточные цитоплазматические рецепторы.

Физиологическая роль – половые гормоны имеют боль­шое значение в детском возрасте, когда эндокринная функция половых желез выражена незначительно, стимулируют разви­тие половых признаков, участвуют в формировании полового поведения, оказывают анаболическое действие, повышая син­тез белка в коже, мышечной и костной ткани.

Регуляция секреции половых гормонов надпочечников осу­ществляется АКТГ. Избыточная секреция андрогенов надпо­чечников вызывает ингибирование женских (дефеминизация) и усиление мужских (маскулинизация) половых признаков. Клинически у женщин это проявляется оволосением по муж­скому типу (усы, борода), аменореей, атрофией грудных желез и матки, огрублением голоса (низкий тембр), увеличением мы­шечной массы и облысением.

Мозговое вещество надпочечников. Составляет 20% от его массы и содержит хромаффинные клетки, которые по сво­ей сути являются постганглионарными нейронами симпати­ческой нервной системы и синтезируют нейрогормоны катехол- амины – адреналин и норадреналин (НА). Их называют гор­монами срочного приспособления к действию сверхпороговых раздражителей среды. В отличие от типичных симпатических нейронов эти клетки синтезируют в основном адреналин (80 – 90% его содержится в оттекающей от надпочечника венозной крови) и в меньшей мере – НА.

Структура, транспорт, метаболизм, механизм действия катехоламинов. Они являются производными аминокислоты тирозина (тирозин ДОФА (дезоксифенилаланин) дофамин НА адреналин), транспортируются в свободной (период их полураспада составляет 30 с) или в свя­занной форме в гранулах тромбоцитов. Катехоламины метаболизируются ферментами моноаминоксидазами (МАО) и катехол-О-метилтрансферазой (КОМТ) и частично выводятся с мочой в неизмененном виде. Они действуют через - и -адренорецепторы клеточных мембран (семейство 7-ТМС-мем- бранных рецепторов) и систему внутриклеточных посредников (цАМФ, ИТФ, Са2+). Основным источником поступления НА в кровоток являются не надпочечники, а симпатические нервные окончания. Поэтому содержание НА в крови состав­ляет в среднем около 0,3 мкг/л, а адреналина – 0,06 мкг/л.

Основные физиологические эффекты катехоламинов реализуются за счет взаимодействия с - и -адренорецепторами. Многие клетки организма содержат эти рецепторы (не­редко оба типа), поэтому область влияния катехоламинов очень широкая, а его направление обусловлено типом адренорецепторов и их избирательной чувствительностью к адрена­лину или НА. Так, адреналин обладает большим сродством к -адренорецепторам, а НА – к -адренорецепторам. Повы­шают чувствительность адренорецепторов к катехоламинам глюкокортикоиды и тиреоидные гормоны. Выделяют функцио­нальные и метаболические эффекты катехоламинов.

Функциональные эффекты катехоламинов: 1) увеличи­ваются частота и сила сердечных сокращений и повышается артериальное давление крови; 2) сужаются вены и артерии кожи и органов брюшной полости, расширяются артерии работающих скелетных мышц; 3) повышается теплообразо­вание в тканях (бурой жировой ткани, мышцах и др.); 4) угне­тается перистальтика гладких мышц желудка и кишечника и повышается тонус их сфинктеров; 5) расслабляются гладкие миоциты бронхов и улучшается вентиляция легких; 6) стиму­лируется секреция ренина почкой; 7) расслабляются гладкие миоциты мочевого пузыря и уменьшается выделение мочи; 8) повышается возбудимость нервной системы и эффектив­ность приспособительных реакций к неблагоприятным влия­ниям среды.

Метаболические эффекты катехоламинов: 1) стимулиру­ется потребление тканями кислорода и окисление веществ (общее катаболическое действие); 2) усиливается гликогенолиз и угнетается синтез гликогена в печени и в мышцах; 3) сти­мулируется глюконеогенез (образование глюкозы из других органических веществ) в гепатоцитах, выход глюкозы в кровь и гипергликемия; 4) активируется липолиз в жировой ткани и выход жирных кислот в кровь.

Регуляция секреции катехоламинов. Осуществляется симпатическим отделом АНС. Происходит рефлекторно при мышечной работе, охлаждении, гипогликемии и т.д. Из окон­чаний преганглионарных симпатических нервных волокон вы­деляется медиатор ацетилхолин, который через никотиновые холинорецепторы нейронального типа вызывает секрецию адреналина и НА из хромаффинных клеток мозгового вещества надпочечников.

Проявления избыточной секреции катехоламинов – гипертензия, тахикардия, повышение основного обмена и температу­ры тела, плохая переносимость человеком высокой температу­ры, повышенная возбудимость и т.д. Недостаточная секреция адреналина и НА проявляется противоположными изменения­ми, прежде всего понижением давления крови (гипотензией), снижением силы и частоты сердечных сокращений.

Половые железы

Половые железы (яичники у женщин и семенники у муж­чин) относят к железам со смешанной функцией. В них образу­ются женские и мужские половые клетки – яйцеклетки и спер­матозоиды. Эндокринная функция проявляется в синтезе и сек­реции женских и мужских половых гормонов. Развитие половых желез и секреция ими в кровь половых гормонов определяет по­ловое развитие и созревание человека. Оно характеризуется полным развитием первичных и вторичных половых признаков. К первичным половым признакам относят половые железы и органы, которые определяют возможность полового акта и де­торождения. Вторичными половыми признаками являются: особенности телосложения (распределение жира, развитие скелетных мышц и др.), тембр голоса (низкий у мужчин и высо­кий у женщин), растительность на лице и волосяной покров на теле мужчин и развитие молочных желез у женщин. Оба типа половых гормонов (мужские, женские) имеются в организме как у женщин, так и у мужчин.

Мужские половые гормоны. К андрогенам – мужским половым гормонам относятся: тестостерон, дегидротестостерон, андростендион, дигидроэпиандростендион. Важнейшая роль среди них принадлежит тестостерону. Андрогены образу­ются: 1) в клетках Лейдига в мужской гонаде (яичко) – 95%; 2) в клетках канальцевого эпителия семенников; 3) в яичнике и в коре надпочечников.

Структура, содержание, транспорт, механизм действия, метаболизм андрогенов.Они являются сте­роидами, производными холестерола. У человека в сутки об­разуется 5 – 12 мг (у мужчин) или 0,5 – 1,5 мг (у женщин) ан­дрогенов. Содержание тестостерона в крови составляет у мужчин 8,5 – 27,0 нмоль/л, у женщин – 0,6 – 1,9 нмоль/л. Он транспортируется на 98% в связанном с белками плазмы (тестостеронсвязывающим глобулином или альбумином) ви­де. Свободную фракцию составляют оставшиеся 2% тесто­стерона. Тестостерон легко проникает через клеточные мем­браны. В клетках-мишенях под влиянием фермента редуктазы тестостерон превращается в дегидротестостерон, который и вызывает через внутриклеточные рецепторы андрогенные эффекты. Частично под влиянием ароматазы тестостерон преобразуется в эстрадиол. Тестостерон и его активные ме­таболиты инактивируются в печени и выводятся из организма с мочой и желчью.

Основные эффекты мужских половых гормонов в орга­низме: 1) формирование мужского фенотипа в процессе половой дифференцировки и развитие первичных половых признаков (критические периоды – 8 – 17-я недели после зачатия для со­матической половой дифференцировки, 1 год – для половой дифференцировки мозга, 10 – 14 лет – пубертатный период); 2) половое созревание и развитие вторичных половых призна­ков (отложение жира; ширина бедер и плеч; оволосение на лице и в подмышечных впадинах; низкий голос и др.); 3) способствование сперматогенезу и репродуктивной функ­ции (пролиферации герментативного эпителия яичек). У ста­риков при избытке гормонов наблюдается рост и увеличение размеров предстательной железы; 4) выраженное анаболи­ческое действие на органы и ткани, особенно на скелетную мускулатуру. Высокочувствительные к андрогенам мышцы расположены главным образом на груди и плечах; 5) влияние на нейроны диэнцефальных отделов головного мозга и стиму­лирование полового поведения (либидо и потенции). Избыточ­ное содержание андрогенов вызывает гиперсексуальность; 6) усиление эпифизарного и аппозиционного роста кости; уси­ление оссификации эпифизарных хрящей и закрытие зон рос­та. Торможение действия паратгормона и предупреждение остеопороза. При избытке тестостерона прекращается рост детей из-за раннего закрытия зон роста. При недостатке на­блюдается гипогонадный гигантизм; 7) стимулирование гемопоэза; 8) регуляция секреции гонадотропинов аденогипофизом и люлиберина гипоталамусом (механизм отрицательной обратной связи); 9) дефеминизация и маскулинизация у жен­щин, что проявляется гирсутизмом, вирилизацией, аменореей и другими признаками.

Регуляция секреции андрогенов. Осуществляется гонадотропинами аденогипофиза, из которых ЛГ является основным стимулятором синтеза и секреции тестостерона. Выделение андрогенов из коры надпочечников стимулируется АКТГ. Тормозят секрецию андрогенов мелатонин, пролактин, недостаточное выделение люлиберина и ЛГ.

При повышении функциональной активности семенни­ков в детском возрасте наблюдается ускоренное половое развитие ребенка с ранним завершенным развитием пер­вичных и вторичных половых признаков, раннее закрытие зон роста и низкорослость (гипергонадная). При избыточ­ном выделении андрогенов у мужчин отмечается рост и уве­личение размеров предстательной железы; гиперсексуаль­ность, увеличение силы мышц и др. При гипофункции поло­вых желез (гипогонадизме) у мальчиков характерна задерж­ка полового развития – гипоплазия половых органов и вторичных половых признаков (узкие плечи при широком тазовом поясе, ложная гинекомастия), а также гипогонад­ный гигантизм. К 15 – 16 годам у юношей могут сформиро­ваться евнухоидные пропорции тела, тембр голоса остается высоким (детским или женским).

Женские половые гормоны. К ним относятся эстрогены и гестагены, являющиеся стероидами, производными холестерола. Они транспортируются в свободном и связанном виде, легко проникают в клетки-мишени и действуют на них через внутриклеточные рецепторы.

Эстрогены. Представлены: эстрадиолом (30 – 400 пг/мл), эстроном (40 – 160 пг/мл), эстриолом (10-20 пг/мл). Они синтезируются преимущественно в клетках внутреннего слоя соединительной капсулы фолликула (95%). в небольших количествах – в надпочечниках и яичках, а в лютеиновую фазу – в желтом теле, что соответствует второму пику эстрадиола в крови. Выделение эстрогенов в кровь регулируется низкими концентрациями ЛГ в присутствии высоких концен­траций ФСГ.

Основные физиологические эффекты эстрогенов: 1) развитие репродуктивной системы (первичных поло­вых признаков) у женщин (матки, маточных труб, влагали­ща); 2) развитие вторичных половых признаков (например, рост протоков молочных желез, пропорций тела (ширина бедер и плеч), рост волос, кожи, формирование высокого тембра голоса, отложение жира). Они определяют также различные психологические и эмоциональные черты, харак­терные для женщин; 3) стимуляция пролиферативных или преовуляторных изменений эндометрия; 4) регуляция секре­ции гонадотропинов аденогипофизом. Уменьшают выделе­ние ФСГ (отрицательная обратная связь) и повышают выде­ление ЛГ (положительная обратная связь) за счет стимуля­ции чувствительности клеток гипофиза, выделяющих ЛГ, к действию люлиберина гипоталамуса. Выделение же люли­берина стимулируется совместным действием эстрадиола и 17-дигидропрогестерона. Это приводит к выбросу ЛГ, рез­кому росту фолликула и его разрыву, формированию желто­го тела; 5) влияние на обмен веществ. Задерживают азот, воду, натрий в тканях, поддерживают уровень холестерола в крови на более низком, чем у мужчин, уровне; 6) ускорение срастания эпифизов с метафизами (контроль роста тела у женщин). После начала менструаций эпифизы быстро за­растают и рост тела прекращается. Тормозят активность ос­теокластов и препятствуют потере Са2+ костью и развитию остеопороза; 7) угнетение сперматогенеза, местное антиандрогенное действие, феминизация (появление вторичных половых признаков, характерных для женщин); 8) подавле­ние лактации и торможение эритропоэза (у женщин эритро­цитов меньше, чем у мужчин).

Гестагены (прогестины). Представлены двумя основ­ными гормонами – прогестероном и 17-дигидропрогестероном. В фолликулярную фазу (реовуляторную) содержание прогестерона в крови составляет 300 – 1000 пг/мл, а суточная продукция – 1 – 3 мг. Основным местом его синтеза в этот пе­риод является кора надпочечников. 17-дигидропрогестерон синтезируется активно в фолликулярной ткани, его уровень в крови составляет 100 – 500 пг/мл, перед овуляцией повыша­ется до 2000 пг/мл. В лютеиновую фазу содержание прогесте­рона в крови увеличивается до 10 000 – 15 000 пг/мл (10 – 15 пг/мл), а суточная продукция составляет 20 – 30 мг/л в сут­ки. Преимущественно синтезируется в желтом теле, которое образуется в результате реорганизации фолликула после его разрыва. Здесь же в желтом теле начинает активно выделять­ся и 17-дигидропрогестерон, уровень которого в крови оста­ется высоким 2500 пг/мл.

Основные физиологические эффекты гестагенов:

1. вызывают секреторную фазу менструального цикла;

2. способствуют развитию альвеолярной (ацинарной) сис­темы молочных желез;

3. подготавливают эндометрий для имплантации оплодо­творенного яйца;

4. оказывают пирогенное действие и повышают исходную температуру тела в середине цикла у женщин;

5. способствуют сохранению беременности;

6. в малых дозах стимулируют, а в больших – подавляют выработку гонадотропинов. Постепенное повышение уровня прогестерона в организме женщин тормозит выделение ЛГ и тем самым способствует нарастанию активности ФСГ, в ре­зультате возникает новый менструальный цикл.

Регуляция секреции женских половых гормонов. Осуществляется гонадотропинами аденогипофиза. ФСГ сти­мулирует синтез и выделение эстрогенов, а ЛГ – и эстроге­нов и гестагенов. Тормозит секрецию женских половых гор­монов, мелатонина. ЦНС участвует в регуляции активности половых желез через гипоталамус и эпифиз, гормоны кото­рых регулируют секрецию ФСГ и ЛГ из аденогипофиза. При изменениях ее функционального состояния, например при сильных эмоциях (испуг), может произойти нарушение или даже прекращение менструального цикла (эмоциональная аменорея).

При повышении функциональной активности яичников в детском возрасте наблюдается ранее половое созревание: раз­виваются молочные железы, формируется телосложение по женскому типу, нередко приходят менструации. При гипофункции яичников у девушек и женщин отсутствуют или слабо развиты вторичные половые признаки, нередко отсут­ствуют менструации, отмечаются особенности их физического развития (высокорослость, евнухоидные пропорции тела, ожирение).

Поджелудочная железа

Поджелудочная железа (ее масса у взрослого человека – 70 – 80 г) является эпителиальной железой со смешанной функцией. Ацинозная ткань железы вырабатывает пищевари­тельный поджелудочный сок, который выводится в просвет двенадцатиперстной кишки. Эндокринную функцию в подже­лудочной железе выполняют клетки эпителиального проис­хождения, получившие название островков Пирогова – Лангерганса и составляющие 1 – 2% от ее массы. В островках рас­полагаются несколько видов эндокринных клеток: -клетки, образующие глюкагон (их в среднем около 20%); -клетки, производящие инсулин (от 65 до 80%); -клетки (от 2 до 8%), синтезирующие соматостатин; РР-клетки (менее 1 %), проду­цирующие панкреатический полипептид. Основными гормо­нами поджелудочной железы, регулирующими обменные про­цессы, являются инсулин и глюкагон.

Инсулин – полипептид, состоящий из 51 аминокислотного остатка. В крови он находится в свободном и связанном с бел­ками плазмы состоянии, а его содержание составляет 16 – 160 мкЕД/мл. Скорость секреции инсулина составляет от 0,5 (в покое, натощак) до 5 ЕД/ч (после приема пищи). Действует через 1-ТМС-мембранные рецепторы в клетках-мишенях инсулинзависимых тканей (печень, мышцы, жировая ткань). Метаболизируется клетками-мишенями, а также в почках, коже, печени. Период полураспада – 30 – 60 мин.

Основные метаболические эффекты инсулина. Он является анаболическим гормоном и оказывает множествен­ный эффект на инсулинзависимые ткани. Во-первых, инсулин усиливает транспорт глюкозы в клетки, стимулирует синтез гликогена в печени и мышцах, подавляет глюконеогенез и гли- когенолиз в печени, понижает уровень сахара в крови. Во-вто­рых, он стимулирует транспорт аминокислот через цитоплазматическую мембрану в клетку и уменьшает распад белка, стимулирует синтез белка в клетках. В-третьих, инсулин стимули­рует включение триглицеридов и жирных кислот в жировую ткань, усиливает синтез липидов и подавляет липолиз в адипоцитах. Таким образом, он оказывает общее анаболическое действие на инсулинзависимые ткани (усиление синтеза в них углеводов, жиров, белков и нуклеиновых кислот).

Регуляция секреции инсулина. Самым мощным стиму­лятором секреции инсулина является повышение содержания глюкозы в крови (норма в плазме крови – 4,44 – 6,67 мМоль/л, или 80 – 120 мг %). Стимулируют выделение инсулина: глюкагон, гормоны желудочно-кишечного тракта (гастрин, секре­тин), кортизол, гормон роста, АКТГ. При активации парасим­патического отдела АНС и выделении его медиатора ацетилхолина отмечается увеличение секреции инсулина.

Тормозят выделение инсулина: гипогликемия, соматостатин (гормон Д-клеток), активация симпатического отдела АНС.

Глюкагон – пептид (состоит из 29 аминокислотных остат­ков), в крови находится преимущественно в свободном состо­янии и его содержание составляет 75 – 150 пг/мл, действует через 7-ТМС-мембранные рецепторы (посредник цАМФ), пе­риод полураспада – до 10 мин.

Основные метаболические эффекты глюкагона. Он является катаболическим гормоном и антагонистом инсулина. Во-первых, глюкагон повышает содержание глюкозы в крови за счет усиления гликогенолиза и стимуляции глюконеогенеза в печени. Во-вторых, он активирует липолиз и подавляет син­тез липидов. В-третьих, глюкагон стимулирует катаболизм белков в тканях и увеличивает синтез мочевины.

Регуляция секреции глюкагона.Секреция глюкагона усиливается при гипогликемии, активации симпатического от­дела АНС и под влиянием гормона роста и угнетается при ги­пергликемии и поддействием соматостатина.

Чаще всего нарушения эндокринной функции поджелудоч­ной железы возникают при повреждении -клеток антителами или вирусами Коксаки. Это ведет к падению уровня инсулина в крови, гипергликемии и развитию заболевания, получившего название "сахарный диабет" или "сахарное мочеизнурение". Клинически это проявляется полиурией (увеличением частоты и объема выделяемой мочи до 4 – 6 л/сут), выраженной жаж­дой и повышенным потреблением жидкостей. Гипергликемия возникает вследствие того, что углеводы не могут применяться для нужд энергетики клетками скелетных мышц, печени, жи­ровой ткани, сердца. В этих условиях названные клетки ис­пользуют для получения энергии липиды и белки, что сопро­вождается накоплением продуктов неполного окисления жир­ных кислот – оксимасляной и ацетоуксусной кислот (кетоно­вых тел). Это может сопровождаться появлением характерного запаха при дыхании и/или мочеиспускании, а также развитием ацидоза, диабетической комы, потерей со­знания и гибелью организма. На сегодняшний день хорошо из­вестно, что сахарный диабет может быть обусловлен не только поражением -клеток поджелудочной железы (сахарный диа­бет I типа, инсулинзависимый, ювенильный, возникающий обычно до 30 лет), но и снижением количества инсулиновых рецепторов в клетках-мишенях (сахарный диабет II типа, ин- сулиннезависимый, или диабет взрослых, возникающий обыч­но после 40 лет). Избыточное повышение содержания инсули­на (например, при лечении сахарного диабета инсулином) ве­дет к гипогликемии, опасность которой состоит в том, что глю­коза служит основным энергетическим субстратом для мозга. В отсутствие глюкозы нарушается функция мозга, возникают повреждения нейронов и, если дефицит сохраняется достаточ­но долго, может наступить смерть.

 

Вилочковая железа (тимус)

Тимус – парный дольчатый орган. Его доли тесно прилега­ют друг к другу. В каждой из них различают корковый и мозго­вой слой. Тимус располагается в верхнем отделе переднего средостения. Масса органа при рождении – 10 – 15 г, достига­ет максимума к началу полового созревания (30 – 40 г), а затем уменьшается (возрастная инволюция). Тимус является центральным органом иммунитета. В тимусе проходит созревание, развитие и дифференцирование Т-лимфоцитов, ответствен­ных за осуществление клеточного иммунитета.

Эндокринная функция вилочковой железы. Из ткани тимуса выделено более 20 видов пептидов, обладающих био­логической активностью: тимозин, тимопоэтины I и II, тимин и др. Они не только играют большую роль в регуляции разви­тия Т-лимфоцитов и иммунологических, защитных реакций организма, но и вызывают ряд общих регуляторных эффектов. Так, тимозин стимулирует пролиферацию Т-лимфоцитов и увеличивает скорость роста твердых и мягких тканей организ­ма, а тимин замедляет передачу информации в нервно-мышеч­ных синапсах. Вилочковую железу рассматривают как орган интеграции иммунной и эндокринной систем.