Открытые шинные конструкции
ВВЕДЕНИЕ
Основное электротехническое оборудование электрических станций и подстанций (генераторы, трансформаторы, синхронные компенсаторы) и аппараты (выключатели, разъединители, короткозамыкатели и отделители, трансформаторы тока и напряжения, реакторы, разрядники и др.) соединяются между собой различными по конструкции токоведущими элементами, которые образуют токопроводы.
Токопровод – это устройство, выполненное в виде пакетов шин или пучка электрических проводов в комплекте с изоляторами и конструкциями и предназначенное для передачи электрической энергии в пределах электростанции, подстанции или цеха.
На промышленных предприятиях токопроводы (ТП) применяют в качестве магистральных линий от источника питания (теплоэлектроцентрали, районной подстанции) к цеховым подстанциям и отдельным мощным электроприемникам. Токопроводы высокого напряжения прокладывают в закрытых галереях, туннелях или на открытом воздухе. Наиболее выгодны экономически открытые токопроводы, особенно гибкие подвесные, если применение их возможно по климатическим условиям и характеру производства.
В качестве токопроводов для передачи электроэнергии от генераторов, трансформаторов и распределительных устройств (РУ) на электростанциях и подстанциях применяют шинные мосты открытого исполнения, гибкие связи и комплектные токопроводы.
Открытые шинные конструкции
Шинной конструкцией называют систему неизолированных проводов (шин), установленных на опорные изоляторы. Они получили широкое распространение для соединения генераторов с трансформаторами и РУ, для выполнения систем сборных шин распределительных устройств различного напряжения, а также для передачи значительных мощностей на расстояние до 1,5-2 км. Неизолированные проводники дешевле изолированных, обладают большей нагрузочной способностью по току, проще в монтаже и эксплуатации.
В электроустановках напряжением до 35 кВ включительно в качестве токоведущих элементов применяют профили и трубы, по форме и размерам соответствующие ГОСТам 15175-70, 15176-70, 434-78, 18432-79, 18475-82. При этом стремятся получить наибольшую нагрузочную способность шин при возможно меньшей затрате металла, достаточной механической прочности конструкции, удобном креплении и крепеже.
Токоведущие части шинных конструкций изготавливают из алюминия марок А8, А85, АДО, АД1, алюминиевых сплавов АМц, АМцС, АМц07, АК6, АМн, АДЗ1, АВ, Д1, 1995 и меди – ШММ, ШМТ. Трубы могут быть круглые (КР), квадратные (КВ), прямоугольные (ПР), фасонные (ФС), по форме и отожженные (М), нагартованные (Н), закаленные и естественно состаренные (Т), закаленные и искусственно состаренные (Т1), нагартованные после закалки и естественно состаренные (ТН), нагартованные после закалки и искусственно состаренные (Т1Н) по состоянию холоднодеформированные трубы.
Круглые трубы изготавливают наружным диаметром от 6 до 150 мм и толщиной стенки S от 0,5 до 5 мм. Квадратные трубы изготавливают со стороной а от 10 до 48 мм и толщиной стенки от 1 до 5 мм. Прямоугольные трубы изготавливают с размерами а от 14 до 60 мм, b – от 10 до 40 мм. Средней толщиной стенки от 1 до 5 мм. Прессованные трубы изготовляют круглой и фасонной формы наружным диаметром от 18 до 300 мм и толщиной стенки от 1,5 до 40 мм. Фасонные трубы изготовляют по чертежам, согласованные между изготовителем и потребителем.
Сортамент шин прямоугольного сечения из алюминия и алюминиевых сплавов определен. Шины прямоугольного сечении изготовляют на различные линейные размеры (со стороной Н от 3 до 110 мм и стороной В от 10 до 500 мм) площадью сечения от 0,3 до 258 см2.
При разработке конструкции распределительных устройств электрических станций и подстанций применяют преимущественно токоведущие части из алюминия и алюминиевых сплавов. Медные шины устанавливают в тех случаях, когда использование алюминиевых шин невозможно из-за коррозии, недостаточной гибкости и прочности и т.п.
В цепях с большими рабочими токами применяют многополосные шины, набранные в пакет из двух и более полос на фазу [рис.1б,в] с прокладками между полосами, равными по длине стороне Н полосы. С увеличением числа полос на фазу допустимое значение тока, нагрузки возрастает не пропорционально числу полос в пакете. Снижается отвод тепла путем лучеиспускания и конвекции с внутренних поверхностей пакета. На переменном токе, кроме того, проявляется влияние эффекта близости, вызывающего перераспределение токов в проводниках (под действием переменного магнитного поля соседнего проводника). Все это усиливает неравномерность распределения тока в проводнике, в результате чего активное сопротивление его возрастает, а допустимый ток нагрузки уменьшается. При числе полос в пакете три и более эффект близости приводит к значительной неравномерности распределения тока в полосах пакета: в средних полосах ток в полтора-два раза меньше, чем в крайних. В результате этого металл в пакете используется неэффективно по сравнению с одиночными шинами. Поэтому при переменном токе лучше применять не более двух (в виде исключения трех) полос в пакете. При постоянном токе, когда эффект близости не проявляется и ток распределяется равномерно между полосами пакета, можно применять пакеты с большим числом полос.
При больших рабочих токах чаще всего применяют трубы и четырехполосные и корытные шины. (рис. 1г - з)Главной особенностью этих шин является расположение материала по периферии сечения. Этим достигается малое проявление поверхности эффекта и эффекта близости, хорошие условия теплоотдачи с поверхности и высокая механическая прочность.
Рис. 1. Профили и трубы электротехнического назначения.
Трубчатые шины сложнее при изготовлении и монтаже. Поэтому их применяют при изготовлении мощных токопроводов на напряжение до 35 кВ и в сетях 110 кВ и выше. В установках напряжением 110 кВ и выше трубчатые шины достаточно большого диаметра позволяют избежать коронирования, что повышает надежность электроустановок. Следует отметить, что в электроустановках 110 кВ и выше шины прямоугольного сечения не используются из-за коронирования.
Системы сборных шин РУ представляют собой неизолированные, сравнительно массивные проводники прямоугольного, круглого и других профилей сечения. В пределах РУ все ответвления от шин присоединения к аппаратам выполняются так же голыми проводниками, образующими ошиновку. Сборные шины являются наиболее ответственной частью электроустановки, так как связывают между собой все присоединения электрического распределительного устройства.
В помещении РУ шины монтируются на специальных полках или каркасах аппаратных ячеек. Шины укладываются на опорных фарфоровых изоляторах на ребро или плашмя и закрепляются при помощи шинодержателей. При большой длине токопровода в местах присоединения к аппаратам устанавливают шинные компенсаторы. Это снижает усилие на шину и аппарат от температурного расширения.
Коэффициент теплоотдачи шин, закрепленных на ребро, на 10-15% выше, чем расположенных плашмя. Шины, обращенные к соседним своей узкой стороной (ребром), обладают большей механической устойчивостью. Для улучшения теплоотдачи, защиты от коррозии и удобства эксплуатации (облегчается ориентировка обозначения фаз) шины окрашиваются в разные цвета с соблюдением ГОСТа 9.104-79.
При рабочих токах, превышающих допустимые для двухполюсных шин наибольшего сечения, более целесообразно применять трубчатые шины, дающие возможность лучше использовать проводниковый материал и повысить механическую прочность конструкции. Для обеспечения большей компактности и надежности электроустановок в ОРУ высокого напряжения (110 кВ и выше) все шире используют жесткую ошиновку, позволяющую уменьшить изоляционные расстояния между токоведущими частями и землей. Для устранения коронирования при этом применяют трубчатую ошиновку из алюминия или алюминиевого сплава вместо подвески двух и более гибких проводов в фазе с большим числом концевой аппаратуры и различных типов зажимов.
В электроустановках высокого напряжения зарубежных стран находят применение токопроводы более сложной конструкции (с двумя эллипсами и перемычкой между ними и сборные трубчатые шины).
Гибкие токопроводы
При выполнении систем сборных шин РУ и связей междуисточниками питания и распределительными устройствами напряжением 35 кВ и выше применяют, как правило, гибкие токопроводы. Они изготовляются, как и воздушные линии, из многопроволочных проводов.
Для изоляции и крепления гибких проводов в электроустановках всех напряжений применяют подвесные, а в сетях до 35 кВ включительно - и линейные штыревые изоляторы. Многопроволочные провода могут быть выполнены из одного (меди, алюминия, алюминиевого сплава, стали) или двух металлов, например, алюминия и стали (так называемые сталеалюминиевые провода).
Расчетные параметры многопроволочных проводов из меди, алюминия марок AT и АТп и алюминиевого сплава ABE (сечение, диаметр, электрическое сопротивление 1 км провода постоянному току при 20°С, разрывное усилие провода, масса 1 км провода и т.д.). ГОСТу 839-80 Е соответствуют следующие марки проводов: М, А, Ап, АКП, АпКП, АН, АНКП, АЖ, АЖП, АС, АНС, АСКС, АпСКС, ДСКП, АпСКП, AСK, АпСК, Они различаются конструкцией, материалом, сроком службы (от 10 до 45 лет), областью преимущественного применения и т.п. Основные характеристики проводов приведены в обозначении их марок.
Сталеалюминиевый провод с заполненным межпроволочным пространством стального сердечника нейтральной смазкой повышенной теплостойкости, с номинальными сечениями алюминиевой части 450 мм2 и стального сердечника 56 мм2: провод АСКС 450/56.
То же, провода из алюминиевого термообработанного сплава, с номинальным сечением 50 мм2: провод АЖ 50.
То же, провода из алюминиевого термостойкого сплава, с заполненным межпроволочным пространством всего провода, за исключением наружной поверхности, нейтральной смазкой повышенной теплостойкости, с номинальным сечением 50 мм2: провод АЖКП 50.
Гибкие токопроводы нашли также распространение на электрических станциях при соединении находящихся на значительном расстоянии трансформаторов связи и генераторов с системами сборных шин распределительных устройств напряжением 6-10 кВ. Такие токопроводы состоят из пучка многопроволочных проводов и равномерно распределенных по окружности крепящего кольца-обоймы. Кольца с токоведущими проводами крепятся к стальным или сталеалюминиевым проводам, воспринимающим механическую нагрузку.
Для устранения (уменьшения) коронирования при сооружении РУ высокого напряжения (220 кВ и выше) применяют расщепление фаз, т.е. каждую фазу токопровода выполняют из двух и более гибких проводов, расположенных на определенном расстоянии между собой. В сетях 220 кВ это расстояние составляет 20-30 см, на напряжении 330-750 кВ 40 см, а на 1500 кВ - 60 см.
Отказ от расщепления фаз путем применения при сооружении сборных шин, полого провода, скрученного из фасонных алюминиевых или медных проволок, позволяет снизить расход материала на 20-35%, упростить и удешевить конструкцию РУ высокого напряжения (500 кВ и выше).
Комплектные токопроводы
Комплектный токопровод – электротехническое устройство, служащее для передачи электроэнергии, защищенное сплошными металлическими оболочками, состоящее из шин, изоляторов, встраиваемых измерительных трансформаторов и других аппаратов, и поставляемое крупными блоками в собранном либо подготовленном для сборки виде.
В цепях генераторного напряжения на электростанциях с агрегатами мощностью 100 МВт и выше, где требуется высокая степень надежности, взамен гибких связей и шинных мостов открытого исполнения получили преимущественное распространение комплектные токопроводы . Особенно целесообразно применение комплектных токопроводов (КПТ) в устройствах на большие номинальные токи (до 25000 А) для цепей с незначительной протяженностью и ответвлениями (отпайками).
В настоящее время для тепловых и атомных электростанций освоен выпуск комплектных токопроводов следующих назначений:
генераторного напряжения, предназначенного для соединения выводов генератора с повышающим трансформатором и трансформатором CH;
собственных нужд (напряжениями 6, 10 кВ) для соединения выводов рабочих ТСН со шкафами КРУ, а также для цепей резервного питания СН;
собственных нужд напряжением 0,4 кВ дляцепей, идущих от резервного ТСН к сборкам других блоков;
резервного возбуждения турбогенераторов, предназначенных длясоединения цепей от сборок резервных возбудителей к сборкам возбудителей всех турбогенераторов станций,
Применение КТП имеет следующие основные преимущества по сравнению с другими способами соединения элементов электротехнических устройств:
обеспечивается более высокая степень эксплуатационной надежности и безопасности обслуживания электроустановки;
достигается внедрение индустриальных методов сооружения и монтажа электроустановок;
становится возможной унификация проектных решений за счет применения типовых элементов КТП. Сокращаются объемы и сроки проектирования;
увеличивается комплектность заводской поставки и упрощаются вопросы комплектации и снабжения;
уменьшаются потери электроэнергии;
исключается возникновение междуфазных коротких замыканий, особенно опасных для турбогенераторов большой мощности (при пофазно-экранированном исполнении КТП),
Токопроводы генераторного напряжения могут состоять из следующих составных частей:
секции (блоки) прямолинейные;
секции (блоки) угловые и ответвительные;
секции с трансформаторами тока, напряжения, заземлителями и разрядниками;
секции с проходными изоляторами;
блоки нулевых выводов генераторов;
блоки с трансформаторами тока нулевой последовательности;
блоки (шкафы) или секции выключателей и разъединителей;
узлы примыкания к генераторам, трансформаторам и аппаратам;
узлы компенсации температурных и строительных перемещений ТП;
узлы стыковые;
узлы изоляции оболочек от металлоконструкций;
установки для принудительного охлаждения.
По способу установки изоляторов в оболочке токопроводы бывают со стационарно установленными изоляторами и с выемными изоляторами.
По способу выполнения оболочки пофазно-экранированные токопроводы подразделяют на КТП с секционированной оболочкой и с электрически непрерывной (цельносварной) оболочкой.
В последние годы КТП со стационарно установленными изоляторами (серии КЭТ) и секционированной оболочкой (серии ТЭК) заменяют токопроводами с выемными изоляторами и электрически непрерывной оболочкой (серии ТЭН, ТЭКН) и самонесущей конструкцией.
Конструкции выемных изоляторов имеют два основных исполнения:
ввертываемые в оболочку изоляторы (ТЭК-20, ТЭКП-20, ТЭКН-20)
изоляторы с плоским фланцем, прикрепляемым коболочке с помощью четырех болтов (у ТЭН).
Выемная конструкция изоляторов позволяет выполнить цельносварные, электрически непрерывные оболочки, что обеспечивает возможность компенсации внешнего магнитного поля, которая достигается соединением экранов всех трех фаз КТП по его концам. Конструкции КТП с секционированными оболочками (серии КЭТ, и ТЭК) сняты с производства, но находятся в эксплуатации на многих электрических станциях страны.
Классы напряжений генераторных токопроводов: 10, 20, 24 и 35 кВ. Номинальные токи токопроводов выбираются из следующего ряда: 1000, 1600, 2000, 3150, 4000, 5000, 6300, 8000, 10000, 12500, 16000, 20000, 25000, 31500 А.
Пример условного обозначения токопровода пофазно-экранированного комплектного, с непрерывными оболочками и естественным охлаждением, класса напряжения 20 кВ, на номинальный ток 12500 А, с током электродинамической стойкости 400 кА, исполнения У, категории размещения 3; токопровод ТЭКНЕ-20-12500-400 УЗ (Е - естественное охлаждение, П - принудительное).
Назначенный срок службы КТП до первого среднего ремонта - 8 лет.