ПРИНЦИП СУПЕРПОЗИЦИИ ( НАЛОЖЕНИЯ ) ПОЛЕЙ

Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3... и т.д. создают электрические поля с напряженностью Е1, Е2, Е3 ... и т.д., то результирующая напряженность в данной точке поля равна геометрической сумме напряженностей.

Силовые линии эл. поля - непрерывные линии, касательными к которым являются векторы напряженности эл.поля в этих точках.

Однородное эл.поле- напряженность поля одинакова во всех точках этого поля.

Свойства силовых линий:не замкнуты (идут от + заряда к _ ), непрерывны, не пересекаются,
их густота говорит о напряженности поля (чем гуще линии, тем больше напряженность).

Графически надоуметь показать эл.поля: точечного заряда, двух точечных зарядов, обкладок
конденсатора ( в учебнике есть).

Работа перемещения электрического заряда в электростатическом поле. Циркуляция вектора напряженности электрического поля.

При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 1):

Электростатическое поле обладает важным свойством: Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями. Следствием независимости работы от формы траектории является следующее утверждение: Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. На рис. 2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа A кулоновских сил на этом перемещении равна

Таким образом, работа на малом перемещении зависит только от расстояния r между зарядами и его изменения r. Если это выражение проинтегрировать на интервале от r = r1 до r = r2, то можно получить

 

Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Применение теоремы Остроградского-Гаусса к расчету поля бесконечной заряженной плоскости.

Итак, на примерах мы показали, что, если силовые линии однородного электрического поля напряженностью пронизывают некоторую площадку S, то поток вектора напряженности (раньше мы называли число силовых линий через площадку) будет определяться формулой:

     

где En – произведение вектора на нормаль к данной площадке (рис. 2.5).


Рис. 2.5

Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности ФЕ через эту поверхность.

Таким образом, поток вектора напряженности зависит от заряда. В этом смысл теоремы Остроградского-Гаусса.

Теорема Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на электрическую постоянную :
.

Пример:

Поле равномерно заряженной бесконечной плоскости:
, где — поверхностная плотность заряда.

Поле двух бесконечных параллельных разноименно заряженных плоскостей с равной по модулю поверхностной плотностью заряда :
.

Поле шара,заряженного равномернос объемной плотностью заряда .
— радиус шара, — общий заряд шара, — расстояние от центра.


Поле равномерно заряженной бесконечной нити с линейной плотностью заряда на расстоянии :
.