Рефлекс. Рефлекторная дуга и кольцо. Моно- и полисинапитические рефлексы. Регуляция функций с позиций кибернетики. Отрицательные и положительные обратные связи. 13 страница

 

Гистогематический барьер может быть между тканью и кровью и между кровью и жидкостью.

 

Основным фактором, влияющим на проницаемость гистогематического барьера, является проницаемость. Проницаемость– способность клеточной мембраны сосудистой стенки пропускать различные вещества. Она зависит от:

 

1) морфофункциональных особенностей;

 

2) деятельности ферментных систем;

 

3) механизмов нервной и гуморальной регуляции.

 

В плазме крови находятся ферменты, которые способны изменять проницаемость сосудистой стенки. В норме их активность невелика, но при патологии или под действием факторов повышается активность ферментов, что приводит к повышению проницаемости. Этими ферментами являются гиалуронидаза и плазмин. Нервная регуляция осуществляется по бессинаптическому принципу, так как медиатор с током жидкости поступает в стенки капилляров. Симпатический отдел вегетативной нервной системы уменьшает проницаемость, а парасимпатический – увеличивает.

 

Гуморальная регуляция осуществляется веществами, делящимися на две группы – повышающие проницаемость и понижающие проницаемость.

 

Повышающее влияние оказывают медиатор ацетилхолин, кинины, простагландины, гистамин, серотонин, метаболиты, обеспечивающие сдвиг pH в кислую среду.

 

Понижающее действие способны оказывать гепарин, норадреналин, ионы Ca.

 

Гистогематические барьеры являются основой для механизмов транскапиллярного обмена.

 

Таким образом, на работу гистогематических барьеров большое влияние оказывают строение сосудистой стенки капилляров, а также физиологические и физико-химические факторы.

 

120. Сердечно-сосудистая система, строение и функции. Структура кругов кровообращения. Морфологические особенности сердца.

Сердечно-сосудистая система -физиологическая система, включающая сердце, кровеносные сосуды, лимфатические сосуды, лимфатические узлы, лимфу, механизмы регуляции,периферические нервы и нервные центры, в частности сосудодвигательный центр и центр регуляции деятельности сердца). Таким образом, сердечно-сосудистая система - это совокупность 2-х подсистем: системы кровообращения и системы лимфообращения.

 

Кровеносные сосуды образую 2 круза кровообращения: малый и большой.

 

Малый круг кровообращения - 1553 г. Сервет - начинается в правом желудочке лёгочным стволом, который несёт венозную кровь. Эта кровь поступает в лёгкие, где происходит регенерация газового состава. Конец малого круга кроообращения - в левом предсердии четырьмя лёгочными венами, по которым в сердце идёт артериальная кровь.

 

Большой круг кровообращения- 1628 г. Гарвей - начинается в левом желудочке аортой и кончается в правом предсердии венами: верхней и нижней полыми венами. Функции сердечно-сосудистой системы: движение крови по сосудом, т. к. кровь и лимфа выполняют свои функции при движении.

 

Основные морфологические особенности сердца У человека 4 х камерное сердце, но с физиологической точки зрения 6-ти камерное: дополнительные камеры - ушки предсердий, т. к. они сокращаются на 0,03-0,04 с раньше предсердий. За счёт их сокращений происходит полное наполнение предсердий кровью. Размеры и масса сердца пропорциональные общим размерам тела. У взрослого объем полости равен 0,5-0,7 л; масса сердца равна 0,4 % от массы тела.

 

Стенка сердца состоит из 3х слоёв. Эндокард - тонкий соединительнотканный слой переходящий во внутреннюю оболочку сосудов.Облегчая внутрисосудистую гемодинамику. Миокард - миокард предсердия отделяется от миокарда желудочков фиброзным кольцом. Эпикард - состоит из 2-х слоёв - фиброзный и сердечный. Фиброзный листок окружает сердце снаружи - выполняет защитную функцию и предохраняет сердце от растяжения.

 

 

Сердечный листок состоит из 2-х частей: висцеральный (эпикард); париетальный, который срастается с фиброзным листком. Между висцеральным и париетальным листками есть полость, заполненная жидкостью (уменьшает травмы).

 

Значение перикарда: защита от механических повреждений; защита от перерастяжения.

 

Оптимальный уровень сердечного сокращения достигается при увеличении длинны мышечных волокон не более чем на 30-40 % от исходной величины. Обеспечивает оптимальный уровень работы клеток синсатриального узла. При перерастяжении сердца нарушается процесс генерации нервных импульсов.

 

121. Функциональные особенности сердечной мышцы: особенности сократимости и метаболизма. Рефрактерная фаза миокарда и сопряжение возбуждения с сокращением.

 

Сократимость сердечной мышцы также существенно отличается от сократимости скелетной мышцы.

 

Во-первых, сердечная мышца в отличие от скелетной подчиняется закону «все или ничего»: сердечная мышца либо не отвечает на раздражение, если оно ниже порогового, либо отвечает максимальным сокращением, если раздражитель достигает пороговой или сверхпороговой силы. Увеличение силы раздражения выше пороговой не ведет к увеличению силы сокращения, как при действии на скелетную мышцу. Это объясняется тем, что скелетная мышца проводит возбуждение изолированно по отдельным мышечным во-локнам, на соседние волокна возбуждение не переходит. У сердечной мышцы возбуждение, возникнув в одном месте, распространяется диффузно по всем кардиомиоцитам, и все они вовлекаются в сокращение.

 

Во-вторых, у сердечной мышцы более длительный период одиночного сокращения: он примерно соответствует длительности ПД (у предсердий — около 100 мс, у желудочков — 300—400 мс). При увеличении частоты сердечных сокращений продолжительность одного сокращения укорачивается. Если частота сердечных сокращений становится меньше, систола желудочков и предсердий удлиняется.

 

В-третьих, сердечная мышца в отличие от скелетной не может сокращаться тетанически.

Рефрактерная фаза миокарда и экстрасистола

 

Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз дольше, чем ПД скелетной мышцы). Во время ПД мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Соотношения между фазами ПД миокарда и величиной его возбудимости показаны на рис. 7.4. Различают период абсолютны рефрактерности (продолжается 0,27 с, т. е. несколько короче длительности ПД; период относи­тельны рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбу­димости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

 

Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следова­тельно, в период сокращения сердце неспособно реагировать на другие раздражители. Наличие длительной рефрактерной фазы пре­пятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.

 

Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость частично или полностью вос­становлена, вызывает внеочередное сокращение сердца — экстра­систолу. Наличие или отсутствие экстрасистол, а также их характер определяется при регистрации электрокардиограммы.

 

122. Функциональные особенности сердечной мышцы: особенности возбуждения и возбудимости. Кривые потенциала действия и Ферворна миокарда желудочков.

Клетки атипической мышечной ткани (миоциты), составляющие проводящую систему сердца, функционально неоднородны. Из всей массы СА- узла только несколько клеток, называемых истинными пейсмекерами (Р-клетки), обладают способностью к спонтанной генерации потенциала действия. Остальные клетки относятся к потенциальным (латентным) водителям ритма. Они, как и рабочие кардиомиоциты, разряжаются в результате пришедшего к ним возбуждения.Атипические мышечные клетки имеют ряд существенных функциональных особенностей, отличающих их от клеток сократительного миокарда: 1) Они имеют низкий уровень мембранного потенциала - около 50-70мВ. 2) Форма потенциала действия ближе к пикообразному потенциалу. 3) Амплитуда потенциала действия очень низкая - до 100мВ. 4) Наблюдается самопроизвольное (спонтанное) изменение мембранного потенциала за счет высокой проницаемости для ионов натрия.

 

Ионный механизм возникновения пейсмекерного потенциала выглядит следующим образом: 1) В состоянии "покоя" клетка пропускает ионы натрия. 2) В период деполяризации, когда уровеньпотенциала уменьшится по сравнению с исходным на 2мВ,| наступает резкое увеличение проницаемости сначала для Nа+, а позже для Са2+. 3) Во время фазы реполяризации клеточная МДД мембрана становится более проницаемой для ионов К+. Важным является то, что калиевые каналы очень быстро инактивируются и во время их инактивации вновь активируются быстрые натриевые каналы.

 

В результате на мембране развивается так называемая медленная диастолическая деполяризация (МДД) - спонтанное (автоматическое) снижение уровня мембранного потенциала до критического уровня деполяризации, в результате чего происходит генерация спонтанного потенциала действия. В норме это характерно только для Р-клеток, составляющих основу синоатриального узла.

 

Электрическая активность типичных миокардиоцитов Миокардиоциты имеют ряд противоположных особенностей: 1)Они имеют высокий уровень мембранного потенциала - до -80-90мВ. Он обусловлен главным образом градиентом ионов калия и выходом ионов калия из клетки. 2)Форма потенциала действия имеет характерную платообразную форму. 3)Общая амплитуда потенциала действия дости­гает - 120мВ. 4)Рабочие клетки миокарда в отличие от водителей ритма в состоянии покоя характеризуются чрезвычайно низкой прони­цаемостью для Na+ и Ca2+.

 

 

Рассмотрим механизм возникновения потенциала действия кардиомиоцита желудочков. Миокардиоцит возбуждается в ответ на бегущий от пейсмекера СА- узла ПД, и генерирует собственный ПД. Его длительность достаточно большая -у миокардиоцитов желудочка -330мс.

 

На кривой ПД миокардиоцита принято выделять пять фаз: 0,1,2, 3,4.

 

Нулевая фаза - фаза быстрой деполяризации. Мембранный потенциал быстро достигает нуля, а затем +30 мВ. Первая фаза – фаза быстрой начальной реполяризации. Вторая фаза плато, когда мембранный потенциал в течение некоторого времени остается постоянным. Третья фаза - конечной реполяризации. Четвертая фаза - это так называемый диастолический потенциал, который наблюдается в период покоя клетки между двумя систолами.

 

В период быстрой деполяризации (0 фаза) вначале открываются быстрые натриевые каналы. За счет вхождения ионов Nа+ мембранный потенциал быстро достигает -40 мВ. В этот момент "классические" натриевые каналы инактивируются. Их инактивация сохраняется на протяжении почти всего потенциала действия. В исходное состояние они приходят лишь когда во время реполяризации мембранный потенциал достигнет -70 мВ. Это важно помнить, так как именно с этими процессами связано изменение возбудимости кардиомиоцита при возбуждении.

 

После того, как произошла инактивация быстрых натриевых каналов, открываются медленные натрий-кальциевые каналы, по которым в миокардиоцит входят ионы натрия и кальция. Мембранный потенциал достигает пика - +30 мВ. Но медленные натрий-кальциевые каналы не в состоянии сразу закрыться, поэтому они остаются открытыми на протяжении не только 0, но и 1 и 2 фаз потенциала действия.

 

Быстрая реполяризация (1 фаза) обусловлена как выходом ионов калия, так и входом ионов хлора. Затем в период "плато" (2 фаза) продолжается вход в клетку ионов натрия и кальция по медленным натрий-кальциевым каналам. Одновременно в этот период остаются открытыми и калиевые каналы. Число входящих зарядов с ионами кальция и натрия в этот период равно числу зарядов, выходящих с ионами калия. Мембранный потенциал как бы застывает на месте. В фазу конечной реполяризации (3 фаза) кальций-натриевые каналы начинают инактивироваться, а поток калия через мембрану усиливается. Во время последней фазы (4 фаза) - диастолического потенциала калиевые каналы постепенно инактивируются, и поток калия из клетки прекращается.

 

Особенности возбудимости кардиомиоцитов Так как на протяжении всего потенциала действия быстрые натриевые каналы инактивированы, кардиомиоцит остается невозбудимым длительное время. У него наблюдается абсолютная рефрактерная фаза. Она длится около 270 мс.

 

 

После этого наступает фаза относительной рефрактерности (30 мс).

 

Ее сменяет фаза супернормальной возбудимости (экзальтация). Наличие длительной абсолютной рефрактерной фазы чрезвычайно важно, благодаря ей миокардиоцит не способен к тетаническому сокращению, так как к моменту восстановления возбудимости миокардиоцит заканчивает процесс сокращения.

123. Физиологические особенности кровообращения в миокарде, мозге, лёгких и почках

 

Сердцеснабжается кровью через коронарные артерии, отходящие от аорты. Они разветвляются на эпикардные артерии, от которых отходят интрамуральные снабжающие кровью миокард. На сердце имеется небольшое количество межартериальных анастомозов, артериовенозные шунты отсутствуют. Миокард пронизывает большое количество капилляров, но прекапиллярных сфинктров в них нет. Отношение количества мышечных волокон и капилляров составляет 1:1. Они идут вдоль мышечных волокон. Имеется сеть сосудов (Вьгссення-Тебезия), по строению напоминающих капилляры. Однако их функция неизвестна. Коронарные сосуды иннервируются симпатическими и парасимпатическими нервами, но первых больше. В состоянии покоя у человека через коронарные сосуды проходит 4-5% всего минутного объема крови или 200-250 мл/мин. При, интенсивной Физической работе коронарный кровоток возрастает в 5-7 раз. В период систолы коронарные сосуды частично сжимаются и кровоток в них сжимается. Во время диастолы он восстанавливается. Несмотря на снижение коронарного кровотока в систолу, необходимый уровень метаболизма миокарда поддерживается за счет высокой объемной скорости кровотока в коронарных артериях, их большой растяжимости, усиления венозного оттока, наличия густой капиллярной сети и высокой скорости транскапилярного обмена. Регуляция коронарного кровотока осуществляется миогенными, гуморальными и нервными механизмами. Первый обусловлен автоматией гладких мышц сосудов и обеспечивает поддержание постоянства коронарного кровотока при колебаниях артериального давления от 75до140 мм.рт.ст. Важнейшим является гуморальный механизм. Наиболее мощным стимулятором расширения коронарных сосудов является недостаток кислорода. Дилатация сосудов наступает при снижении содержания кислорода в крови всего на 5%. Предполагают, что в условиях гипоксии миокарда не происходит полного ресинтеза АТФ, что приводит к накоплению аденозина. Он тормозит сокращения ГМК сосудов. Расширяют сердечные сосуды гистамин, ацетилхолин, простагландины Е Симпатические нервы обладают слабым сосудосуживающим влиянием. Слабое вазодилататорное действие оказывают парасимпатические нервы. Ишемия миокарда приводит к тяжелым нарушениям деятельности сердца. Уже через 6-10 минут прекращения кровотока наступает остановка середа. Если аноксия длится 30 мин, то развиваются и структурные изменения в миокарде. После этого восстановить работу сердца невозможно. Поэтому 30-ти минутный срок называется пределом реанимации (гипотермия, мозг).

 

 

Кровоснабжение мозга осуществляется двумя внутренними сонными и двумя позвоночными артериями, а отток крови происходит по двум яремным венам. Магистральные артерии соединяются в обширный анастомоз - валлизиев круг. Вены образуют систему синусов. Отходящие от него крупные артерии образуют ее овальных сосудов. Эта сеть вместе с пиальными венами формирует мягкую мозговую оболочку. От пиальных сосудов в глубь мозга идут мелкие радиальные артерии, которые переходят в капиллярную сеть. Большое количество артерий и анастомозов обеспечивают высокую надежность системы кровоснабжения мозга. В основном сосуды иннервируются симпатическими нервами, хотя имеется и холинэргическая иннервация. Через сосуды мозга в покое, проходит 15%. минутного объема крови. Мозг потребляет до 20% всего кислорода и 17% глюкозы. Он очень чувствителен к гипоксии и гипогликемии, следовательно, ухудшению кровотока. За счет механизмов саморегуляции сосуды мозга способны поддерживать его нормальный уровень в широком диапазоне колебаний АД. Однако при его подъеме выше 180 мм.рт.ст, возможно резкое расширение артерий, мозга, увеличение проницаемости гематоэнцефалического барьера и отек мозга. Тонус сосудов мозга регулируется миогенными, гуморальными и нейрогенными механизмами. Миогенный проявляется сокращением гладких мышц сосудов при повышении кровяного давления и наоборот расслаблением при его понижении. Он стабилизирует быстрые колебания кровотока. В частности при изменениях положения тела. Нервная регуляция осуществляется симпатическими нервами, которые кратковременно и незначительно суживают сосуды. Основная роль принадлежит гуморальным факторам, в первую очередь метаболическим. Увеличение концентрации СОз крови сопровождается выраженным расширением сосудов мозга. Подобным же действием обладают катионы водорода, поэтому сдвиг реакции крови в кислую сторону приводит к вазодилатации. При гипервентиляции содержание СОз падает, сосуды мозга суживаются, мозговой кровоток уменьшается. Возникают головокружение, спутанность сознания, судорога и т.д. Аденозин. брадикинин, гистамин расширяют сосуды. Вазопрессин, серотонин, ангиотезин сужашающих.

 

Существенной особенностью сосудистой системы легких является то, что она включает сосуды малого круга и бронхиальные артерии большого. Первые служат для газообмена, вторые обеспечивают кровоснабжение ткани легких. У человека между ними имеются анастомозы, роль которых в гемодинамике малого круга значительно возрастает при застойных явлениях в нем. Легочная артерия разветвляется на более мелкие артерии, а затем артериолы. Артериолы окружены паренхимой легких, поэтому кровоток в них тесно связан с режимом вентиляции легких. В легких имеется 2 типа капилляров: широкие диаметром 20-40 мкм, и узкие 6-12 мкм. Стенка легочного капилляра и альвеолы образуют функциональную единицу альвеолокапиллярную мембрану. Через нее осуществляется газообмен. Минутный объем крови в сосудах малого круга такой же, как и большом, кровяное давление меньше. Оно не может значительно повышаться из-за большой растяжимости стенок сосудов легких. Нервная регуляция тонуса легочных сосудов осуществляется симпатическими нервами. Они оказывают слабое сосудосуживающее влияние. Из факторов гуморальной регуляции легочного кровотока главную роль играют серотонин, гистамин, ангиотезин, которые суживают сосуды. Катехоламины оказывают слабое вазоконстрикторное действие.

 

Через почки в состоянии покоя проходит 20% минутного объема, крови. Причем 90% этой крови проходит через корковый слой, образованный нефронами. Давление в капиллярах сосудистых клубочков нефронов значительно выше чем в других капиллярах большого круга и составляет 50-70 мм.рт.ст. Это связано с тем, что диаметр приносящих артериол больше, чем в выносящих. Основное значение в регуляции почечного кровотока принадлежит миогенным механизмам. Они поддерживают постоянство капиллярного давления и кровотока при колебаниях аотериального от 80 до 180 мм.рт.ст. Вторым по значению является гуморальный механизм. Особую роль играют ренин ренинангиотензиновая и калликреинкининовая системы. При снижении системного кровеносного давления, недостатке воды и ионов натрия юкстагломерулярными клетками приносящих артериол начинает вырабатываться фермент ренин. Он поступает в интерстициальную ткань почек и стимулирует образование ангиотензина-2. Ангиотензин-2 суживает выносящие артериолы и снижает проницаемость стенки капилляров клубочков. Фильтрация в них уменьшается, что способствует задержке воды. Кроме того, ангиотензин повышает чувствительность гладкомышечных клеток артериол к норадреналину симпатических нервных окончаний. Это также способствует снижению почечного кровотока. При уменьшении кровотока в ткани почек синтезируется фермент калликреин. Под его влиянием из кининогенов образуется белок брадикинин. Брадикинин расширяет сосуды почек. Почечный кровоток и фильтрация воды в клубочках возрастают. Таким образом, калликренн-кининовая система является антагонистом ренин-ангиотензивной. Особенно ее активность возрастает при физической нагрузке и эмоциональном напряжении. При сужении сосудов почек в них также синтезируется простагландины обладающие вазодилататорным действием. Адреналин и вазопрессин суживают почечные сосуды. Значение нервно-рефлекторных механизмов в регуляции их тонуса невелико. Сосуды иннервирутотся симпатическими вазоконстрикторами. Кратковременное рефлекторное сужение почечных сосудов наблюдается при эмоциональном стрессе.

124. Проводящая система сердца. Опыты Станниуса. Проведение возбуждения в сердце. Роль атриовентрикулярной задержки. Блокады

 

Проводящая система сердца:

 

1. Сино-атриальный узел (Кейс-Флека). Он расположен в устье полых вен т.е венозных синусах.

 

2. Межузловые и межпредсердные проводящие пути Бахмана, Венкенбаха и Торелла. Проходят по миокарду предсердий и межпредсердной перегородке.

 

3. Атриовентрикулярный узел (Ашофф-Тавара). Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия.

 

4. Атриовентрикулярный пучок или Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородке. Затем делится на две ножки правую и левую. Они образуют ветви в миокарде желудочков.

 

5. Волокна Пуркинье. Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками сократительного миокарда желудочков

 

Синоатриальный узелобразован преимущественно Р-клеткми. Остальные отделы проводящей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости, кардиомиоцитов, миокард является функциональным синцитием. т.е. сердечная мышца реагирует на раздражение как единое целое.

 

Роль различных отделов проводящей системы в автоматии сердца впервые была установлена Станниусом и Гаскеллом. Станниус накладывал лигатуры (т.е делал перевязки) на различные участки сердца. Первая лигатура накладывается между венозным синусом, где расположен синоатриальный узел, и правым предсердием. После этого синус продолжает сокращаться в обычном ритме, т.е. с частотой 60-80 сокращений в минуту, а предсердия и желудочки останавливаются. Вторая лигатура накладывается на границе предсердий и желудочков. Это вызывает возникновение сокращений желудочков с частотой примерно в 2 раза меньшей, чем частота автоматии синусного узла, т.е. 30-40 в минуту. Желудочки начинают сокращаться из-за механического раздражения клеток атриовентрикулярного узла. Третья лигатура накладывается на середину желудочков. После этого их верхняя часть сокращается в атриовентрикулярном ритме, а нижняя с частотой в 4 раза меньше синусного ритма, т.е. 15-20 в минуту. Гаскелл вызывал местное охлаждение узлов проводящей системы и установил, что ведущим водителем ритма сердца является синоатриальный. На основании опытов Станниуса и Гаскелла был сформулирован принцип убывающего градиента автоматии. Он гласит, что чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии. Нарушение проведения импульса, вырабатывающегося в синусовом узле,- блокада, может возникать в любом участке проводящей системы сердца. Возникает при воспалительных, дистрофических и склеротических процессах в миокарде. При этом наблюдается повреждение проводящей системы сердца. Блокады могут быть как стойкими, так и временными Все виды блокад можно подразделить на две большие группы: предсердные и желудочковые. Так как предсердные блокады в клинической практике встречаются реже, остановимся только на желудочковых блокадах. Среди них выделяют также 2 группы: поперечные и продольные.

 

Поперечные или атриовентрикулярные блокады возникают в результате нарушения проведения импульса от предсердий к желудочкам. По степени тяжести подразделяют на 4 степени или 3, но тогда вторая имеет 2 подгруппы.

 

Продольные или внутрижелудочковые блокады наиболее часто встречаются в виде блокады левой или правой ножек пучка Гиса. Могут возникать блокады лишь отдельных ветвей данных ножек. На ЭКГ имеются характерные признаки: зубец Р не изменен, комплекс QRS возникает регулярно, но так как нарушен ход при проведении импульсов, желудочковые комплексы деформированы и расширены.

 

Блокада ножек пучка Гиса субъективными симптомами не проявляется и определяется только электрокардиографически.

125. Функциональные особенности миокарда: автоматия сердца и её природа, градиент автоматии Гаскелла. Электрофизиологические изменения в узле Кис-Флекка.

 

Автоматия – это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей базальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K.

 

Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам Na, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню.

 

Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ±120–130 мВ.

 

В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоатриального узла и при включении дополнительного раздражения.

 

При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в атриовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка.

 

Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла, то есть от места непосредственной генерализации импульсов. Его наличие можно доказать, напри­мер, в опыте Станниуса с накладыванием ли­гатур между различными отделами сердца ля­гушки и последующим подсчетом частоты сокращений различных отделов сердца. Автоматия всех нижележащих отделов проводя­щей системы сердца проявляется только в патологических случаях, в норме они функ­ционируют в ритме, навязанном им синоат-риальным узлом, поэтому собственный их ритм не проявляется.

126. Биотоки сердца и ЭКГ-графия. Правила равностороннего треугольника Эйнтховена. Отведения и характеристика ЭКГ. Клиническое значение ЭКГ.

 

Электрокардиография —регистрация сум­марной электрической активности сердца с определенных участков тела. Электрокардио­грамма (ЭКГ) — кривая, отражающая про­цесс возникновения, распространения и исчезновения возбуждения в различных отделах сердца. Поскольку ткани организма способ­ны проводить электрическое поле во всех на­правлениях, удается с помощью усилителей зарегистрировать электрические явления на поверхности тела. ЭКГ отражает только из­менения электрических потенциалов, но не сокращения миокарда.

 

А. Возникновение электрического тока в сердцеможно наблюдать, если на сокращаю­щееся сердце крысы набросить нерв нервно-мышечного препарата лягушки: мышца начи­нает сокращаться в ритме сердца. Электрические потенциалы сердца можно зареги­стрировать на его поверхности с помощью внеклеточных биполярных электродов. Пред­ставим сердце в виде мышечного полого однокамерного органа или полоски миокарда без проводящей системы (рис. 13.7).