Закон Ома в дифференциальной и интегральной формах.
(98.5)
Выражение (98.5) — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:
где r и r0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при t и 0°С, a —температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температурная зависимость сопротивления может быть представлена в виде
где Т — термодинамическая температура.
Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемыхкритическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.
На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называютсятермисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.
Закон Ома для неоднородного участка цепи
(100.3)
откуда
(100.4)
Выражение (100.3) или (100.4) представляет собойзакон Ома для неоднородного участка цепи в интегральной форме, который являетсяобобщенным законом Ома.
Если на данном участке цепи источник тока отсутствует (=0), то из (100.4) приходим к закону Ома для однородного участка цепи (98.1):
(при отсутствии сторонних сил напряжение на концах участка равно разности потенциалов (см. § 97)). Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, j1=j2; тогда из (100.4) получаем закон Ома для замкнутой цепи:
где - э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R=r+R1, где r — внутреннее сопротивление источника тока, R1—сопротивление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид
Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома (100.4) получим, что =j1—j2, т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи.