Вращательное движение и его кинематические характеристики
Свойства пространства
Описать движение материальной точки – значит знать ее положение относительно выбранной системы отсчета в любой момент времени. Системойотсчёта называется система координат, связанная с телом отсчёта и снабжённая синхронизированными часами. Наиболее часто используется прямоугольная декартова система координат .
Положение материальной точки характеризуется радиусом-вектором , проведённым из начала координат в данную точку (рис. 1). Проекции радиуса-вектора на координатные оси соответствуют координатам точки в выбранной системе координат :
.
Движение материальной точки задано, если известна зависимость координат точки от времени, т.е. или
.
Данные уравнения являются кинематическими уравнениями движения материальной точки, или законом движения точки. В процессе движения конец радиуса-вектора, связанный с точкой, описывает в пространстве кривую, называемую траекторией движения материальной точки. В зависимости от формы траектории различают прямолинейное и криволинейное движения.
Перемещением материальной точки называют вектор, проведённый из начальной точки в конечную точку траектории
.
Вектор может быть выражен через приращения координат и орты соответствующих осей (единичные векторы, направленные по осям):
.
Модуль вектора перемещения можно определить следующим образом: .
Путь материальной точки S12 - это длина траектории.
Скорость
Скорость - векторная физическая величина, характеризующая быстроту изменения положения тела в пространстве, равная перемещению тела за единицу времени. Различают среднюю и мгновенную скорости.
- средняя скорость;
- мгновенная скорость;
- среднее значение модуля скорости.
Вектор средней скорости направлен так же, как и вектор перемещения . Вектор мгновенной скорости направлен по касательной к траектории движения так же, как вектор элементарного перемещения:
.
Так как , где dS - элементарный путь, то модуль мгновенной скорости равен производной пути по времени:
.
В декартовой системе координат скорость можно представить через её проекции на оси: Модуль скорости может быть найден по следующей формуле:
.
При рассмотрении движения тела относительно двух различных инерциальных систем отсчета используют классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно движущейся системы
и скорости самой движущейся системы относительно неподвижной
:
.
Ускорение
Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости с течением времени, равная приращению скорости за единицу времени. Различают среднее и мгновенное ускорения.
- среднее ускорение,
- мгновенное ускорение.
Вектор ускорения может быть представлен через его проекции на координатные оси:
,
,
,
.
Модуль ускорения можно определить следующим образом:
.
Вращательное движение и его кинематические характеристики
При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики.
Угловое перемещение - вектор, численно равный углу поворота тела
за время
и направленный вдоль оси вращения так, что, глядя вдоль него, поворот тела наблюдается происходящим по часовой стрелке.
Угловая скорость - характеризует быстроту и направление вращения тела, равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.
При вращательном движении справедливы следующие формулы: ;
;
.
Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно первой производной угловой скорости и направлено вдоль оси вращения:
;
;
.
Зависимость выражает закон вращения тела.
При равномерном вращении: e = 0, w = const, j = wt.
При равнопеременном вращении: e = const, ,
.
Для характеристики равномерного вращательного движения используются период вращения и частота вращения.
Период вращения Т – время одного оборота тела, вращающегося с постоянной угловой скоростью.
Частота вращения n – количество оборотов, совершаемых телом за единицу времени.
Угловая скорость может быть выражена следующим образом:
.
Связь между угловыми и линейными кинематическими характеристиками