Оптическая головка самонаведения

 

ОГС предназначена для осуществления захвата и автоматичес­кого сопровождения цели по ее тепловому излучению, измерения угловой скорости линии визирования ракета — цель и формиро­вания управляющего сигнала, пропорционального угловой скоро­сти линии визирования, в том числе и в условиях воздействия ложной тепловой цели (ЛТЦ).

Конструктивно ОГС состоит из координатора 2 (рис. 63) и электронного блока 3. Дополнительным элементом, оформляющим ОГС, является корпус 4. Аэродинамический насадок 1 служит для снижения аэродинамического сопротивления ракеты в полете.

В ОГС применен охлаждаемый фотоприемник, для обеспече­ния требуемой чувствительности которого служит система охлаж­дения 5. В качестве хладагента используется сжиженный газ, получаемый в системе охлаждения из газообразного азота путем дросселирования.

Структурная схема оптической головки самонаведения (рис. 28) состоит из схем следящего координатора и автопилота.

Следящий координатор (СК) осуществляет непрерывное ав­томатическое слежение за целью, формирует сигнал коррекции для совмещения оптической оси координатора с линией визиро­вания и обеспечивает подачу управляющего сигнала, пропорцио­нального угловой скорости линии визирования, в автопилот (АП).

Следящий координатор состоит из координатора, электрон­ного блока, системы коррекции гироскопа и гироскопа.

Координатор состоит из объектива, двух фотоприемников (ФПок и ФПвк) и двух предусилителсй электрических сигналов (ПУок и ПУвк). В фокальных плоскостях основного и вспомогательного спектральных диапазонов объектива координатора на­ходятся соответственно фотоприемники ФПок и ФПвк с радиально расположенными относительно оптической оси растрами определенной конфигурации.

Объектив, фотоприемники, предусилители закреплены на ро­торе гироскопа и вращаются вместе с ним, причем оптическая ось объектива совпадает с осью собственного вращения ротора ги­роскопа. Ротор гироскопа, основную массу которого составляет постоянный магнит, установлен в кардановом подвесе, позволяющем ему отклоняться от продольной оси ОГС на угол пеленга в любом направлении относительно двух взаимно перпендикуляр­ных осей. При вращении ротора гироскопа происходит обзор про­странства в пределах поля зрения объектива в обоих спектраль­ных диапазонах с помощью фоторезисторов.

 
 

Изображения удаленного источника излучения расположены в фокальных плоскостях обоих спектров оптической системы в виде пятен рассеяния. Если направление на цель совпадает с оптичес­кой осью объектива, изображение фокусируется в центр поля зрения ОГС. При появлении углового рассогласования между осью объектива и направлением на цель пятно рассеяния смещается. При вращении ротора гироскопа фоторезисторы засвечиваются на время прохождения пятна рассеяния над фоточувствительным слоем. Такая импульсная засветка преобразуется фоторезистора­ми в электрические импульсы, длительность которых зависит от величины углового рассогласования, причем с увеличением рассо­гласования при выбранной форме растра длительность их умень­шается. Частота следования импульсов равна частоте вращения фоторезистора.

Рис. 28. Структурная схема оптической головки самонаведения

 

Сигналы с выходов фотоприемников ФПок и ФПвк поступают соответственно на предусилители ПУок и ПУвк, которые связаны общей системой автоматического регулирования усиления АРУ1, работающей по сигналу с ПУок. Этим обеспечивается постоянство отношения величин и сохранение формы выходных сигналов пред-усилителей в требуемом диапазоне изменения мощности прини­маемого ОГС излучения. Сигнал с ПУок поступает на схему пере­ключения (СП), предназначенную для защиты от ЛТЦ и фоновых помех. Защита от ЛТЦ основана на разных значениях температур излучения от реальной цели и ЛТЦ, определяющих различие в положении максимумов их спектральных характеристик.

На СП поступает также сигнал с ПУвк, содержащий информа­цию о помехах. Отношение величины излучения от цели, прини­маемого вспомогательным каналом, к величине излучения от це­ли, принимаемого основным каналом, будет меньше единицы, и сигнал от ЛТЦ на выход СП не проходит.

В СП для цели формируется пропускной строб; выделенный на СП сигнал от цели поступает на избирательный усилитель и амплитудный детектор. Амплитудный детектор (АД) выделяет сигнал, амплитуда первой гармоники которого зависит от углово­го рассогласования между оптической осью объектива и направ­лением на цель. Далее сигнал проходит через фазовращатель, ко­торый компенсирует запаздывание сигнала в электронном блоке, и поступает на вход усилителя коррекции, усиливающего сигнал по мощности, что необходимо для осуществления коррекции гиро­скопа и подачи сигнала в АП. Нагрузкой усилителя коррекции (УК) служат обмотки коррекции и последовательно соединенные с ними активные сопротивления, сигналы с которых поступают в АП.

Наводимое в катушках коррекции электромагнитное поле взаи­модействует с магнитным полем магнита ротора гироскопа, вы­нуждая его прецессировать в сторону уменьшения рассогласова­ния между оптической осью объектива и направлением на цель. Таким образом, осуществляется слежение ОГС за целью.

При малых расстояниях до цели увеличиваются воспринимае­мые ОГС размеры излучения от цели, что приводит к изменению характеристик импульсных сигналов с выхода фотоприемников, из-за чего ухудшается способность слежения ОГС за целью. Для исключения этого явления в электронном блоке СК предусмотре­на схема ближней зоны, обеспечивающая слежение за энергети­ческим центром реактивной струи и сопла.

Автопилот выполняет следующие функции:

-фильтрацию сигнала с СК для повышения качества сигнала управления ракетой;

-формирование сигнала на разворот ракеты на начальном уча­стке траектории для автоматического обеспечения необходимых углов возвышения и упреждения;

-преобразование сигнала коррекции в сигнал управления на частоте управления ракеты;

-формирование команды управления на рулевом приводе, работающем в релейном режиме.

Входными сигналами автопилота являются сигналы усилителя коррекции, схемы ближней зоны и пеленговой обмотки, а выходным сигналом — сигнал с двухтактного усилителя мощности, на­грузкой которого являются обмотки электромагнитов золотниково­го распределителя рулевой машинки.

Сигнал усилителя коррекции проходит через последовательно соединенные синхронный фильтр и динамический ограничитель и поступает на вход сумматора І. Сигнал с пеленговой обмотки поступает на схему ФСУР по пеленгу. Он необходим на началь­ном участке траектории для сокращения времени выхода на ме­тод наведения и задания плоскости наведения. Выходной сигнал с ФСУР поступает на сумматор І.

Сигнал с выхода сумматора І, частота которого равна часто­те вращения ротора гироскопа, поступает на фазовый детектор. Опорным сигналом фазового детонатора является сигнал с об­мотки ГОН. Обмотка ГОН устанавливается в ОГС таким обра­зом, чтобы ее продольная ось лежала в плоскости, перпендику­лярной продольной оси ОГС. Частота наводимого в обмотке ГОН сигнала равна сумме частот вращения гироскопа и ракеты. По­этому одной из составляющих выходного сигнала фазового детек­тора является сигнал на частоте вращения ракеты.

Выходной сигнал фазового детектора поступает на фильтр, на входе которого суммируется с сигналом генератора линеаризации в сумматоре ІІ. Фильтр подавляет высокочастотные составляю­щие сигнала с фазового детектора и уменьшает нелинейные иска­жения сигнала генератора линеаризации. Выходной сигнал с филь­тра подастся на усилитель-ограничитель с большим коэффициен­том усиления, на второй вход которого поступает сигнал с датчи­ка угловых скоростей ракеты. С усилителя-ограничителя сигнал поступает на усилитель мощности, нагрузкой которого являются обмотки электромагнитов золотникового распределителя рулевой машинки.

Система арретирования гироскопа предназначена для согласо­вания оптической оси координатора с визирной осью прицельно­го устройства, которая составляет заданный угол с продольной осью ракеты. В связи с этим при прицеливании цель будет нахо­диться в поле зрения ОГС.

Датчиком отклонения оси гироскопа от продольной оси раке­ты является пеленговая обмотка, продольная ось которой совпа­дает с продольной осью ракеты. В случае отклонения оси гиро­скопа от продольной оси пеленговой обмотки амплитуда и фаза наводимой в ней ЭДС однозначно характеризуют величину и на­правление угла рассогласования. Встречно с пеленговой обмоткой включена обмотка заклона, расположенная в блоке датчиков пус­ковой трубы. Наводимая в обмотке заклона ЭДС по величине про­порциональна углу между визирной осью прицельного устройства и продольной осью ракеты.

Разностный сигнал с обмотки заклона и пеленговой обмотки, усиленный по напряжению и мощности в следящем координаторе, поступает в обмотки коррекции гироскопа. Под воздействием мо­мента со стороны системы коррекции гироскоп прецессирует в сторону уменьшения угла рассогласования с визирной осью при­цельного устройства и арретируется в этом положении. Разарретирование гироскопа осуществляется АРП при переводе ОГС в ре­жим слежения.

Для поддержания скорости вращения ротора гироскопа в тре­буемых пределах служит система стабилизации оборотов.

 

Рулевой отсек

 

Рулевой отсек включает в себя аппаратуру управления поле­том ракеты. В корпусе рулевого отсека размещены рулевая ма­шинка 2 (рис. 29) с рулями 8, бортовой источник питания, состоящий из турбогенератора 6 и стабилизатора-выпрямителя 5, датчик 10 угловых скоростей, усилитель /, пороховой аккумулятор 4 да­вления, пороховой управляющий двигатель 3, розетка 7 (с блоком взведения) и дестабилизатор

 

 
 

Рис. 29. Рулевой отсек: 1 - усилитель; 2 - рулевая машинка; 3 - управляющий двигатель; 4 - аккумулятор давле­ния; 5 - стабилизатор-выпрямитель; 6 - турбогенератор; 7 - розетка; 8 - рули (пласти­ны); 9 - дестабилизатор; 10 - датчик угловых скоростей


Рис. 30. Рулевая машинка:

1 - выводные концы катушек; 2 - корпус; 3 - фиксатор; 4 - обойма; 5 - фильтр; 6 - рули; 7 - стопор; 8 - стойка; 9 - подшипник; 10 и 11 - пружины; 12 - поводок; 13 - сопло; 14 - газораспределительная втулка; 15 - золотник; 16 - втулка; 17 - правая катушка; 18 - якорь; 19 - поршень; 20 - левая катушка; Б и В - каналы

 

 
 

Рулевая машинка предназначена для аэродинамического уп­равления ракетой в полете. Одновременно РМ служит распреде­лительным устройством в системе газодинамического управления ракетой на начальном участке траектории, когда аэродинамичес­кие рули неэффективны. Она является газовым усилителем управ­ляющих электрических сигналов, формируемых ОГС.

Рулевая машинка состоит из обоймы 4 (рис. 30), в приливах которой расположены рабочий цилиндр с поршнем 19 и фильтр 5 тонкой очистки. В обойму запрессован корпус 2 с золотниковым распределителем, состоящим из четырехкромочного золотника 15, двух втулок 16 и якорей 18. В корпусе размещены две катушки 17 и 20 электромагнитов. Обойма имеет две проушины, в кото­рых на подшипниках 9 расположена стойка 8 с пружинами (рес­сорой) и с напрессованным на нее поводком 12. В пазах поводка и стойки расположены рули 6, которые в полете удерживаются в раскрытом положении стопорами 7 и пружинами 10 и 11. В при­ливе обоймы между проушинами размещается газораспредели­тельная втулка 14, жестко закрепленная с помощью фиксатора 3 на стойке. На втулке имеется паз с отсечными кромками для подвода газа, поступающего от ПУД к каналам Б, В и соп­лам 13.

РМ работает от газов ПАД, которые по трубе через фильтр тонкой очистки поступают к золотнику и от него по каналам в кольцах, корпусе и обойме под поршень. Командные сигналы с ОГС поступают поочередно в катушки электромагнитов РМ. При прохождении тока через правую катушку 17 электромагнита якорь 18 с золотником притягиваются в сторону этого электромагнита и открывают проход газа в левую полость рабочего цилиндра под поршень. Под давлением газа поршень перемещается в крайнее правое положение до упора в крышку. Перемещаясь, поршень ув­лекает за собой выступ поводка и поворачивает поводок и стойку, а вместе с ними и рули в крайнее положение. Одновременно по­ворачивается и газораспределительная втулка, при этом отсечная кромка открывает доступ газа от ПУД через канал к соответствующему соплу.

При прохождении тока через левую катушку 20 электромагни­та поршень перемещается в другое крайнее положение.

В момент переключения тока в катушках, когда усилие, созда­ваемое пороховыми газами, превышает силу притяжения электро­магнита, золотник под действием силы от пороховых газов пере­мещается, причем перемещение золотника начинается раньше, чем происходит нарастание тока в другой катушке, что повышает быстродействие РМ.

Бортовой источник питания предназначен для электропитания аппаратуры ракеты в полете. Источником энергии для него яв­ляются газы, образующиеся при сгорании заряда ПАД.

БИП состоит из турбогенератора и стабилизатора-выпрямите­ля. Турбогенератор состоит из статора 7 (рис. 31), ротора 4, на оси которого крепится турбинка 3, являющаяся его приводом.

Стабилизатор-выпрямитель выполняет две функции:

-преобразует напряжение переменного тока турбогенератора в требуемые значения постоянных напряжений и поддерживает их стабильность при изменениях скорости вращения ротора турбоге­нератора и тока нагрузки;

-регулирует скорость вращения ротора турбогенератора при изменении давления газа на входе в сопло путем создания допол­нительной электромагнитной нагрузки на валу турбинки.

 

 

 
 

 

 

Рис. 31. Турбогенератор:

1 - статор; 2 - сопло; 3 - турбинка; 4 – ротор

 

БИП работает следующим образом. Пороховые газы от сго­рания заряда ПАД через сопло 2 подаются на лопатки турбинки 3 и приводят ее во вращение вместе с ротором. При этом в об­мотке статора индуктируется переменная ЭДС, которая подается на вход стабилизатора-выпрямителя. С выхода стабилизатора-выпрямителя постоянное напряжение подается в ОГС и усили­тель ДУС. На электровоспламенители ВЗ и ПУД напряжение с БИП поступает после выхода ракеты из трубы и раскрытия ру­лей РМ.

Датчик угловых скоростей предназначен для формирования электрического сигнала, пропорционального угловой скорости ко­лебаний ракеты относительно ее поперечных осей. Этот сигнал используется для демпфирования угловых колебаний ракеты в по­лете, ДУС представляет собой состоящую из двух обмоток рамку 1 (рис. 32), которая на полуосях 2 подвешена в центровых винтах 3 с корундовыми подпятниками 4 и может прокачиваться в рабочих зазорах магнитной цепи, состоящей из основания 5, по­стоянного магнита 6 и башмаков 7. Съем сигнала с чувствитель­ного элемента ДУС (рамки) осуществляется через гибкие безмоментные растяжки 8, распаянные на контакты 10 рамки и контак­ты 9, электрически изолированные от корпуса.

 

 

       
   

Рис. 32. Датчик угловых скоростей:

1 - рамка; 2 - полуось; 3 - центровой винт; 4 - подпятник; 5 - основание; 6 - магнит;

7 - башмак; 8 - растяжка; 9 и 10 - контакты; 11 - кожух

 

ДУС устанавливается так, чтобы его ось Х-Х совпадала с продольной осью ракеты. При вращении ракеты только вокруг продольной оси рамка под действием центробежных сил устанав­ливается в плоскости, перпендикулярной оси вращения ракеты.

Перемещение рамки в магнитом поле не происходит. ЭДС в ее обмотках не наводится. При наличии колебаний ракеты относи­тельно поперечных осей происходит перемещение рамки в магнит­ном поле. Наводимая при этом в обмотках рамки ЭДС пропор­циональна угловой скорости колебаний ракеты. Частота ЭДС со­ответствует частоте вращения вокруг продольной оси, а фаза сиг­нала — направлению вектора абсолютной угловой скорости ра­кеты.

 
 

Снимаемый с сигнальной обмотки ДУС сигнал синусоидальной формы поступает на усилитель. Часть усиленного сигнала подается на демпфирующую обмотку для компенсации колебаний рамки.

Рис. 33. Пороховой аккумулятор давления:

1 - корпус; 2 - дроссель; 3 - фильтр; 4 - пороховой заряд; 5 - навеска пороха; 6 - пиротехническая петарда; 7 - воспламенитель; 8 - электровоспламенитель

 

Усилитель предназначен для усиления выходного сигнала ДУС. Конструкция усилителя представляет собой отдельный блок, за­литый пенополиуретаном.

 
 

Пороховой аккумулятор давления предназначен для питания пороховыми газами РМ и БИП. ПАД состоит из корпуса 1, (рис. 33), представляющего собой камеру сгорания, и фильтра 3, в котором происходит очистка газа от твердых частиц. Расход газа и параметры внутренней баллистики определяются отверстием дросселя 2. Внутри корпуса размещаются пороховой заряд 4 и вос­пламенитель 7, состоящий из электровоспламенителя 8, навески 5 пороха и пиротехнической петарды 6.

 

Рис. 34. Пороховой управляющий двигатель:

7 - переходник; 3 - корпус; 3 - пороховой заряд; 4 - навеска пороха; 5 - пиро­техническая петарда; 6 - электровоспламенитель; 7 - воспламенитель

 

ПАД работает следующим образом. Электрический импульс с электронного блока пускового механизма поступает на электровоспламенитель, воспламеняющий навеску пороха и пиротехничес­кую петарду, от форса пламени которых воспламеняется порохо­вой заряд. Образующиеся при этом пороховые газы очищаются в фильтре, после чего поступают в РМ и турбогенератор БИП.

Пороховой управляющий двигатель предназначен для газоди­намического управления ракетой на начальном участке траектории полета. ПУД состоит из корпуса 2 (рис. 34), представляющего со­бой камеру сгорания, и переходника 1. Внутри корпуса размеща­ются пороховой заряд 3 и воспламенитель 7, состоящий из элек-тровоспламенителя 6, навески 4 пороха и пиротехнической петар­ды 5. Расход газа и параметры внутренней баллистики определя­ются дроссельным отверстием в переходнике.

ПУД работает следующим образом. После вылета ракеты из пусковой трубы и раскрытия рулей РМ электрический импульс с конденсатора взведения поступает на электровоспламенитель, вос­пламеняющий навеску пороха и петарду, от форса пламени которых загорается пороховой заряд. Пороховые газы, проходя через распределительную втулку и два сопла, расположенные перпенди­кулярно плоскости рулей РМ, создают управляющее усилие, обес­печивающее разворот ракеты.

Розетка осуществляет электрическую связь ракеты с пусковой трубой. Она имеет основные и контрольные контакты, размыка­тель для подключения конденсаторов С1 и С2 блока взведения к электровоспламепителям ВЗ (ЭВ1) и ПУД, а также для комму­тации плюсового вывода БИП к ВЗ после вылета ракеты из трубы и раскрытия рулей РМ.

 

 
 

 

 

Рис. 35. Схема блока взведения:

1 - размыкатель

 

 

Размещенный в корпусе розетки блок взведения состоит из конденсаторов С1 и С2 (рис. 35), резисторов R3 и R4 для снятия остаточного напряжения с конденсаторов после проведения про­верок или несостоявшегося пуска, резисторов R1 и R2 для ограни­чения тока в цепи конденсаторов и диода Д1, предназначенного для электрической развязки цепей БИП и ВЗ. Напряжение на блок взведения подается после перевода пускового крючка ПМ в положение до упора.

Дестабилизатор предназначен для обеспечения перегрузок, тре­буемой устойчивости и создания дополнительного крутящего мо­мента, в связи с чем его пластины установлены под углом к про­дольной оси ракеты.

 

Боевая часть

 

Боевая часть предназначена для поражения воздушной цели или нанесения ей повреждений, приводящих к невозможности вы­полнения боевой задачи.

Поражающим фактором БЧ являются фугасное действие удар­ной волны продуктов взрывчатого вещества БЧ и остатков топли­ва ДУ, а также осколочное действие элементов, образующихся при взрыве и дроблении корпуса.

БЧ состоит из собственно боевой части, контактного взрывате­ля и взрывного генератора. БЧ является несущим отсеком ракеты и выполнена в виде неразъемного соединения.

Собственно БЧ (осколочно-фугасного действия) предназначена для создания заданного поля поражения, воздействующего на цель после получения от ВЗ инициирующего импульса. Она сос­тоит из корпуса 1 (рис. 36), боевого заряда 2, детонатора 4, ман­жеты 5 и трубки 3, через которую проходят провода от ВЗ к рулевому отсеку ракеты. На корпусе имеется бугель Л, в отверстие которого входит стопор трубы, предназначенный для фиксации в ней ракеты.

 

 
 

Рис. 36. Боевая часть:

БЧ - собственно боевая часть; ВЗ - взрыватель; ВГ - взрывной генератор: 1- корпус;

2 - боевой заряд; 3 - трубка; 4 - детонатор; 5 - манжета; А - бугель

 

Взрыватель предназначен для выдачи детонационного импуль­са на подрыв заряда БЧ при попадании ракеты в цель или по ис­течении времени самоликвидации, а также для передачи детона­ционного импульса от заряда боевой части к заряду взрывного генератора.

Взрыватель электромеханического типа имеет две ступени предохранения, которые снимаются в полете, чем обеспечивается бе­зопасность эксплуатации комплекса (пуск, техническое обслужи­вание, транспортирование и хранение).

Взрыватель состоит из предохранительно-детонирующего уст­ройства (ПДУ) (рис. 37), механизма самоликвидации, трубки, конденсаторов С1 и С2, основного датчика цели ГМД1 (импульс­ного вихревого магнитоэлектрического генератора), дублирующего датчика цели ГМД2 (импульсного волнового магнитоэлектричес­кого генератора), пускового электровоспламенителя ЭВ1, двух боевых электровоспламенителей ЭВ2 и ЭВЗ, пиротехнического за­медлителя, инициирующего заряда, капсюля-детонатора и дето­натора взрывателя.

ПДУ служит для обеспечения безопасности в обращении с взрывателем до момента взведения его после пуска ракеты. Оно включает в себя пиротехнический предохранитель, поворотную втулку и блокирующий стопор.

Детонатор взрывателя служит для подрыва БЧ. Датчики цели ГМД 1 и ГМД2 обеспечивают срабатывание капсюля-детонатора при попадании ракеты в цель, а механизм самоликвидации — сра­батывание капсюля-детонатора по истечении времени самоликви­дации в случае промаха. Трубка обеспечивает передачу импуль­са от заряда боевой части к заряду взрывного генератора.

Взрывной генератор-предназначен для подрыва несгоревшей части маршевого заряда ДУ и создания дополнительного поля по­ражения. Он представляет собой расположенную в корпусе взры­вателя чашку с запрессованным в ней составом взрывчатого ве­щества.

Взрыватель и боевая часть при пуске ракеты работают следу­ющим образом. При вылете ракеты из трубы раскрываются ру­ли РМ, при этом замыкаются контакты размыкателя розетки и напряжение с конденсатора С1 блока взведения поступает на электровоспламенитель ЭВ1 взрывателя, от которого одновремен­но зажигаются пиротехнический предохранитель ПДУ и пиротех­ническая запрессовка механизма самоликвидации.

 

 

 
 

Рис. 37. Структурная схема взрывателя

 

В полете под воздействием осевого ускорения от работающе­го маршевого двигателя блокирующий стопор ПДУ оседает и не препятствует развороту поворотной втулки (снята первая ступень предохранения). Через 1—1,9 с после пуска ракеты прогорает пи­ротехнический предохранитель, пружина разворачивает поворотную втулку в боевое положение. При этом ось капсюля-детонато­ра совмещается с осью детонатора взрывателя, контакты поворот­ной втулки замыкаются, взрыватель подключается к БИП ракеты (снята вторая ступень предохранения) и готов к действию. В то же время продолжает гореть пиротехническая запрессовка меха­низма самоликвидации, а БИП подпитывает конденсаторы С1 и С2 взрывателя на всем. протяжении полета.

При попадании ракеты в цель в момент прохождения взрыва­теля через металлическую преграду (при ее пробитии) или вдоль нее (при рикошете) в обмотке основного датчика цели ГМД1 под воздействием вихревых токов, наводимых в металлической пре­граде при перемещении постоянного магнита датчика цели ГМД1, возникает импульс электрического тока. Этот импульс подается на электровоспламенитель ЭВЗ, от луча которого срабатывает капсюль-детопатор, вызывая действие детонатора взрывателя. Дето­натор взрывателя инициирует детонатор боевой части, срабатыва­ние которого вызывает разрыв боевого заряда БЧ и взрывчатого вещества в трубке взрывателя, передающей детонацию к взрыв­ному генератору. При этом происходит срабатывание взрывного генератора и подрыв остатков топлива ДУ (при их наличии).

При попадании ракеты в цель срабатывает также дублирую­щий датчик цели ГМД2. Под воздействием воли упругих дефор­маций, имеющих место при встрече ракеты с преградой, якорь датчика цели ГМД2 отрывается, происходит разрыв магнитной цепи, в результате чего в обмотке наводится импульс электричес­кого тока, который подается на электровоспламенитель ЭВ2. От луча огня электровоспламенителя ЭВ2 зажигается пиротехничес­кий замедлитель, время горения которого превышает время, не­обходимое для подхода основного датчика цели ГМД1 к прегра­де. После прогорания замедлителя срабатывает инициирующий заряд, вызывая срабатывание капсюля-детонатора и детонатора БЧ, подрыв БЧ и остатков топлива ДУ (при их наличии).

В случае промаха ракеты по цели после прогорания пиротех­нической запрессовки механизма самоликвидации от луча огня срабатывает капсюль-детонатор, вызывая действие детонатора и подрыв БЧ боевой части с взрывным генератором для самоликви­дации ракеты.

 

Двигательная установка

 

Твердотопливная ДУ предназначена для обеспечения вылета ракеты из трубы, придания ей необходимой угловой скорости вра­щения, разгона до маршевой скорости и поддержания этой ско­рости в полете.

ДУ состоит из стартового двигателя, двухрежимного однока­мерного маршевого двигателя и лучевого воспламенителя замед­ленного действия.

Стартовый двигатель предназначен для обеспечения вылета ра­кеты из трубы и придания ей необходимой угловой скорости вращения. Стартовый двигатель состоит из камеры 8 (рис. 38), стартового заряда 6, воспламенителя 7 стартового заряда, диа­фрагмы 5, диска 2, газоподводящей трубки 1 и соплового блока 4. Стартовый заряд состоит из трубчатых пороховых шашек (или монолита), свободно установленных в кольцевом объеме камеры. Воспламенитель стартового заряда состоит из корпуса, в котором размещены электровоспламенитель и навеска пороха. Диск и диафрагма обеспечивают крепление заряда при работе и тран­спортировании.

Стартовый двигатель стыкуется к сопловой части маршевого двигателя. При стыковке двигателей газоподводящая трубка на­девается на корпус лучевого воспламенителя 7 (рис. 39) замед­ленного действия, расположенного в предсопловом объеме марше­вого двигателя. Такое соединение обеспечивает передачу огневого импульса на лучевой воспламенитель. Электрическая связь вос­пламенителя стартового двигателя с пусковой трубой осуществля­ется через контактную связь 9 (рис. 38).

 

 

 
 

Рис. 38. Стартовый двигатель:

1 — газоподводящая трубка; 2 — диск; 3 — заглушка; 4 — сопловой блок; 5 — диафрагма; 6 — стартовый заряд; 7 — воспламенитель стартового заря­да; 8 —камера; 9 — контактная связь

 

Сопловой блок имеет семь (или шесть) расположенных под углом к продольной оси ракеты сопел, обеспечивающих вращение ракеты на участке работы стартового двигателя. Для обеспече­ния герметичности камеры ДУ при эксплуатации и создания не­обходимого давления при воспламенении стартового заряда в соп­ла установлены заглушки 3.

Двухрежимный однокамерный маршевый двигатель предназ­начен для обеспечения разгона ракеты до маршевой скорости на первом режиме и поддержания этой скорости в полете на втором режиме.

Маршевый двигатель состоит из камеры 3 (рис. 39), маршево­го заряда 4, воспламенителя 5 маршевого заряда, соплового блока 6 и лучевого воспламенителя 7 замедленного действия. В пе­реднюю часть камеры ввинчивается дно 1 с посадочными местами для стыковки ДУ и БЧ. Для получения требуемых режимов горе­ния заряд частично забронирован и армирован шестью проволоч­ками 2.

 

 

 
 

Рис. 39. Маршевый двигатель:

 
 

1 – дно; 2 – проволочки; 3 – камера; 4 – маршевый заряд; 5 – воспламенитель маршевого заряда; 6 – сопловой блок; 7 – лучевой воспламенитель замедленного действия; 8 – заглушка; А – резьбовое отверстие

 

Рис. 40. Лучевой воспламенитель замедленного действия: 1 - пиротехнический замедлитель; 2 — корпус; 3 — втулка; 4 — передаточный заряд; 5 — детон. заряд

 
 

 

 

Рис. 41. Крыльевой блок:

1 - пластина; 2 - передний вкладыш; 3 - корпус; 4 - ось; 5 - пру­жина; 6 - стопор; 7 - винт; 8 - задний вкладыш; Б - выступ

 

Для обеспечения, герметичности камеры при эксплуатации и создания необходимого давления при воспламенении маршевого заряда на сопловом блоке установлена заглушка 8, которая раз­рушается и сгорает от пороховых газов маршевого двигателя. На внешней части соплового блока имеются резьбовые отверстия А для крепления крыльевого блока к ДУ.

Лучевой воспламенитель замедленного действия предназначен для обеспечения срабатывания маршевого двигателя на безопас­ном для стрелка-зенитчика расстоянии. За время его сгорания, равное 0,33 — 0,5 с, ракета удаляется от стрелка-зенитчика на рас­стояние не менее 5,5 м. Это предохраняет стрелка-зенитчика от воздействия струи пороховых газов маршевого двигателя.

Лучевой воспламенитель замедленного действия состоит из корпуса 2 (рис. 40), в котором размещены пиротехнический за­медлитель 1, передаточный заряд 4 во втулке 3. С другой сторо­ны во втулку запрессован детонирующий заряд 5. От пороховых газов, образующихся в камере стартового двигателя при горении заряда, воспламеняется детонирующий заряд. Ударная волна, образующаяся при детонации, передается через стенку втулки и воспламеняет передаточный заряд, от которого зажигается пиро­технический замедлитель. Через время задержки от пиротехниче­ского замедлителя загорается воспламенитель маршевого заряда, который воспламеняет маршевый заряд.

ДУ работает следующим образом. При подаче электрического импульса на электровоспламенитель стартового заряда срабаты­вает воспламенитель, а затем стартовый заряд. Под воздействием реактивной силы, создаваемой стартовым двигателем, ракета вы­летает из трубы с необходимой угловой скоростью вращения. Стартовый двигатель заканчивает работу в трубе и задерживается в ней. От пороховых газов, образовавшихся в камере стартового двигателя, срабатывает лучевой воспламенитель замедленного действия, поджигающий воспламенитель маршевого заряда, от которого на безопасном для стрелка-зенитчика расстоянии сраба­тывает маршевый заряд. Реактивная сила, создаваемая марше­вым двигателем, разгоняет ракету до маршевой скорости и под­держивает эту скорость в полете.

 

Крыльевой блок

 

Крыльевой блок предназначен для аэродинамической стабили­зации ракеты в полете, создания подъемной силы при наличии углов атаки и поддержания требуемой скорости вращения ракеты на траектории.

Крыльевой блок состоит из корпуса 3 (рис. 41), четырех скла­дывающихся крыльев и механизма их стопорения.

Складывающееся крыло состоит из пластины 7, которая кре­пится двумя винтами 7 к вкладышам 2 и 8, надетым на ось 4, размещенную в отверстии корпуса.

Механизм стопорения состоит из двух стопоров 6 и пружины 5, с помощью которой стопоры разжимаются и запирают крыло при раскрытии. После вылета вращающейся ракеты из трубы под действием центробежных сил крылья раскрываются. Для поддержания требуемой скорости вращения ракеты в полете крылья развернуты относительно продольной оси крыльевого бло­ка на определенный угол.

Крыльевой блок винтами крепится на сопловом блоке марше­вого двигателя. На корпусе крыльевого блока имеется четыре вы­ступа Б для соединения его со стартовым двигателем с помощью разжимного соединительного кольца.

 
 

Рис. 42. Труба 9П39(9П39-1*)

1 — передняя крышка; 2 и 11— замки; 3 — блок датчиков; 4 — антенна; 5 — обоймы; 6 и 17 – крышки; 7 – диафрагма; 8 – плечевой ремень; 9 – обойма; 10 – труба; 12 — задняя крышка; 13 — лампа; 14 — винт; 15 — колодка; 16 — рычаг механизма накала; 18. 31 и 32 – пружины; 19 38 – фиксаторы; 20 – разъем; 21 – задняя стойка; 22 — механизм бортразъема; 23 — ручка; 24 — передняя стойка; 25 — обтекатель; 26 — насадок; 27 – плата; 28 – штырьевые контакты; 29 – направляющие штыри; 30 - стопор; 33 — тяга; 34 — вилка; 35 — корпус; 36 — кнопка; 37 - проушина; А и Е — метки; Б и М – отверстия; В – мушка; Г – целик; Д – треугольная метка; Ж – вырез; И – направляющие; К — скос; Л и У — поверхности; Д — паз; Р и С – диаметры; Ф – гнезда; Ш – плата; Щ и Э – прокладка; Ю – накладка; Я – амортизатор;

*) Примечание:

1. В эксплуатации могут находится два варианта труб: 9П39 (с антенной 4) и 9П39-1 (без антенны 4)

2. В эксплуатации могут находится 3 варианта механических прицела с лампой световой информации