Председатель Совета, доцент З. И. Кормщикова
СОГЛАСОВАНО УТВЕРЖДАЮ Декан лесотранспортного факультета Зам. директора по учебной работе
__________________ З. И. Кормщикова _____________________________
«____»________________ 2006 г. «____»________________ 2006 г.
Кафедра: Машины и оборудование лесного комплекса
СБОРНИК ОПИСАНИЙ ЛАБОРАТОРНЫХ РАБОТ
По дисциплине
«ТЕПЛОТЕХНИЧЕСКИЕ РАСЧЕТЫ В ПРОЦЕССАХ ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ В Л/З ПРОИЗВОДСТВЕ»
специальная
Для подготовки дипломированного специалиста по направлению 651600 «Технологические машины и оборудование»
Специальности 150405 «Машины и оборудование лесного комплекса»
Квалификация - инженер
Форма обучения | Д/О | З/0 |
Курс | 3, 4 | |
Семестр | 6, 7 | - |
Всего, час | ||
Всего аудиторных, ч | ||
Лекции, ч | ||
Лабораторных занятий, ч | ||
Практические занятия, ч | - | |
Самостоятельная работа, ч | ||
Контрольная работа, две | 5 к. | |
Зачет | 6 сем | 5к |
Экзамен, ч | 7 сем | 5 к. |
Сыктывкар 2006
Сборник описаний лабораторных работ составлен в соответствии с государственным стандартом высшего профессионального образования, учебным планом , утвержденным ректором Санкт-Петербургской государственной лесотехнической академии имени С. М. Кирова по направлению 651600 «Технологические машины и оборудование»
Сборник разработал: ст. преподаватель Сивков Е. Н.
Сборник описаний лабораторных работ обсужден на заседании
Кафедры «МиОЛК», протокол № __от ___________2006г.
Заведующий кафедрой, профессор Б. П. Евдокимов
Сборник описаний рассмотрен и одобрен
Советом лесотранспортного факультета,
протокол № ___ от ___________2006г.
Председатель Совета, доцент З. И. Кормщикова
ОГЛАВЛЕНИЕ
Введение………………………………………………………………………………………..3
Методические рекомендации………………………………………………………………..3
Лабораторная работа № 1
Определение затрат энергии на нагрев антифриза (охлаждающей жидкости)
до 80оС………………………………………………………………………………………….5
Лабораторная работа № 2.
Определение теплоёмкости охлаждающих жидкостей………………………………..16
Лабораторная работа № 3
Изучение процесса теплопередачи при теплообмене в устройствах двигателя
внутреннего сгорания……………………………………………………………………….21
Лабораторная работа № 4
Изучение процесса теплового излучения от отопительных регистров……………………………………………………………………………………..24
Лабораторная работа № 5
Определение термодинамических параметров двигателя ЗИЛ – 130 для исходных данных теплового расчёта четырёхтактного двигателя внутреннего сгорания……………………..28
Лабораторная работа № 6
Расчёт основных параметров и построение индикаторной диаграммы поршневого карбюраторного двигателя ЗИЛ – 130 …………………………………………………28
Лабораторная работа № 7
Определение и расчёт эффективных показателей двигателя ЗИЛ – 130 ……..30
Лабораторная работа № 8
Освоение методики проведения испытаний по снятию скоростных характеристик на обкаточно-тормозном стенде КИ-5543-ГОСНИТИ …………………………………..33
Лабораторная работа № 9
Снятие скоростной характеристики двигателя ЗИЛ–130………………………..…35
Лабораторная работа № 10
Построение диаграммы внешней скоростной характеристики двигателя
ЗИЛ – 130…………………………………………………………………………………..38
Библиографический список……………………………………………………………..40
ВВЕДЕНИЕ
Данная дисциплина развивает способность студентов определять степень целесообразности технологических процессов на основе существующих нормативных показателей с применением аналитических данных. В процессе изучения студенты осваивают способы контроля за состоянием технологических процессов. Цель преподавания - научить студентов самостоятельно на основе специальной литературы производить тепловые расчеты промышленных конструкций и технологических процессов в лесной промышленности по специальности 170400.
После изучения дисциплины студент должен знать и уметь:
- применяемые и альтернативные виды топлив, методы определения качественного состава топлива;
- существующие конструкции промышленных установок связанных с добычей тепловой энергии, с экономичным расходованием тепла, с утилизацией вторичных тепловых ресурсов, с созданием комфортных условий для человека;
- методы расчёта теплогенераторных промышленных установок, двигателей внутреннего сгорания;
- нормы расхода топлива в соответствии с вырабатываемой мощностью;
- технические показатели работы теплогенераторных установок и двигателей внутреннего сгорания;
- определять состояние теплового режима технологического процесса;
- применять электронно-вычислительную технику при проведении расчетов;
- определять нагрузочные режимы, составлять расчётные схемы и графики работы двигателей внутреннего сгорания, а также технологических процессов теплопотребления;
- производить тепловой расчет поршневого двигателя внутреннего сгорания
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
по подготовке к лабораторным работам
К лабораторным работам допускаются студенты, получившие инструктаж по технике безопасности.
Для подготовки к выполнению лабораторных работ студенты должны самостоятельно проработать необходимый теоретический материал и записать нужные сведения по выполняемой работе. В начале каждой лабораторной работы проводится контрольный опрос группы, в результате которого преподаватель делает заключение о допуске студента к лабораторной работе. После подготовки рабочего места проводятся непосредственное выполнение работы, обработка результатов и оформление отчета.
Работа считается принятой после предъявления ее преподавателю оформленный в соответствии с требованиями и последующей защитой.
К работе допускаются студенты после проведения инструктажа по правилам техники безопасности, ознакомившиеся с методическими указаниями и успешно ответившие на контрольные вопросы.
Включение лабораторной установки и управление ее работой проводится только преподавателем или заведующим лабораторией.
ЛАБОРАТОРНАЯ РАБОТА № 1
2 часа
Определение затрат энергии на нагрев антифриза
(охлаждающей жидкости) до 80оС
Цель работы: определить плотность потока излучения нагретой стенки нагревателя; определить количество тепла расходуемое на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С.
Задачи работы: изучение законов теплового излучения; ознакомление с лабораторным оборудованием; научить производить расчеты на основе изученного материала по данным проведенных экспериментов, подготавливать отчет по лабораторной работе; по итоговым данным делать анализ и записать выводы.
Обеспечивающие средства: емкость для антифриза, электрический нагреватель, измеритель температуры CENTER-350 с жидкокристаллическим дисплеем, измеритель температуры спиртовой градусник ТС–7–М1, компьютер для обработки данных.
Задание: определить зависимости плотности потока излучения и температур, найти коэффициент излучения серого тела для нагревателя, поверхностную плотность теплового потока нагревателя, определить время нагрева жидкости от 200С до 800С; произвести расчет расхода энергии на нагрев антифриза в интервале заданных температур.
Требования к отчету: отчет предоставляется каждым студентом в конце лабораторной работы после оформления и записи выводов по итоговым данным в соответствии с требованиями по оформлению отчетов [ 11 ].
Технология работы:
1.Подготовить рабочее место для проведения лабораторной работы в соответствии с инструкцией по технике безопасности.
2. Ознакомиться с учебным материалом по определениям и законам переноса теплоты и вещества [5,8 ]:
Теплопроводность - молекулярный перенос теплоты в среде с неоднородным распределением температуры посредством теплового движения микрочастиц.
Конвекция - перенос теплоты в среде с неоднородным распределением температуры при движении среды.
Теплообмен излучением - теплообмен, включающий переход внутренней энергии тела (вещества) в энергию излучения, перенос излучения, преобразование энергии излучения во внутреннюю энергию другого тела (вещества).
На практике также имеют место следующие процессы. Конвективный теплообмен - теплообмен при совместном протекании молекулярного и конвективного переноса теплоты (теплопроводности и конвекции).
Теплоотдача (конвективная теплоотдача) - конвективный теплообмен между движущейся средой и поверхностью ее раздела с другой средой (твердым телом, жидкостью или газом).
Теплопередача - процесс теплообмена между двумя теплоносителями (движущейся средой, используемой для переноса теплоты) через разделяющую их стенку.
Радиационно-кондуктивный теплообмен - теплообмен, обусловленный совместным переносом теплоты излучением и теплопроводностью.
Радиационно-конвективный теплообмен (сложный теплообмен) -теплообмен, обусловленный совместным переносом теплоты излучением, теплопроводностью и конвекцией.
Независимо от механизма переноса, тепловой поток всегда направлен от более нагретого к менее нагретому телу, а сам процесс теплообмена, согласно второму закону термодинамики, является необратимым. Теплообмен между телами зависит от их формы и размеров, а также от времени процесса, так как происходит в конкретных пространственно-временных условиях. Другими важными факторами являются физические свойства тел и их агрегатное состояние. В результате перепад температур, геометрия и физические свойства тел, агрегатное состояние и параметры теплоносителя, а также время процесса будут определять интенсивность теплообмена и количество переносимой теплоты.
Основным фактором, определяющим интенсивность теплообмена, является температура.
Теплопроводность жидкостей. Жидкости занимают промежуточное положение между газами и твердыми телами. Молекулы жидкости (в отличие от газов) расположены достаточно тесно и совершают сложные периодические движения лишь в определенных ограниченных участках пространства; одновременно каждая молекула находится в сфере действия других молекул. Теплопроводность жидкости осуществляется обменом энергии при соударениях молекул по типу распространения продольных колебаний (аналогично распространению звука).
Теплопроводность жидкостей лежит в диапазоне 0,1... 1 Вт/(м#К) и уменьшается с ростом температуры (за исключением воды и глицерина).
Природа теплового излучения. В отличие от конвективного теплообмена, для которого тепловой поток в каждой точке среды определяется локальным значением градиента температуры в этой точке, лучистый поток определяется излучением внешних источников (по отношению к среде). При этом среда может не принимать участия в переносе теплоты. Носителем теплового излучения являются электромагнитные волны, энергия которых зависит от температуры тела, его атомной и молекулярной структуры, а также от состояния поверхности тела. Свойствами теплового излучения обладает электромагнитное излучение только в диапазоне длин волн, Х=0,4... 800 мкм.
Свет и тепловое излучение распространяются с одинаковой скоростью (в вакууме с0=3 • 108 м/с). В вещественной среде с коэффициентом преломления пс скорость распространения электромагнитного излучения будет с=Со/пс.
Электромагнитное излучение, кроме скорости распространения с, характеризуется длиной волны X и частотой колебаний V, c=V-A,. Квантовая теория излучения Планка устанавливает, что лучистая энергия излучается или поглощается отдельными порциями (квантами света или фотонами). Отметим, что дискретность относится только к процессам собственно испускания и поглощения, а излучение распространяется в пространстве непрерывно в виде электромагнитных волн.
Для расчета процессов тепломассообмена обычно используют уравнения для плотности тепловых и массовых потоков, записанные через коэффициенты конвективной теплоотдачи а и конвективной массоотдачиВ
q = ocAT; mc =рДрс.
Значения коэффициентов аир представляют в виде обобщенных (критериальных) уравнений, получаемых с использованием теории подобия. Рассмотрим основные положения теории подобия, большой вклад в развитие которой внесли отечественные ученые М.В. Кирпи-чев,(1879-1955), М. А. Михеев (1902- 1970),Л. И. Седов (1907- 1999)идр.
Теория подобия - учение о подобных процессах (явлениях) в природе и технике. Подобные процессы должны происходить в подобных геометрических и временных условиях, иметь одинаковую физическую природу и описываться одинаковыми по форме и по существу уравнениями.
Теория подобия основывается на том очевидном факте, что явления в природе и технике не могут зависеть от выбора единиц измерения и их размерности. Поэтому первым этапом использования теории подобия является описание изучаемых явлений в безразмерной форме путем перехода от размерных переменных (Т, w, X,, с, v и т. д.) к безразмерным величинам.
л-теорема размерности устанавливает число безразмерных переменных л при общем числе размерных переменных п и числе первичных (основных) размерных перемен-ных к, я=п к.
Первичные размерные переменные в системе СИ - это масса (кг), время (с), длина (м), температура (К), сила тока (А). Первичные размерные величины определяют путем прямого измерения. Другие размерные переменные, выражаемые через основные, называют вторичными и их размерность выражается через размерность первичных величин: скорость (м/с),сила (Н=кг-м/с2), работа (теплота) (Дж=Н-м) и др.
Безразмерные переменные представляют собой определенную комбинацию размерных переменных, например, в виде отношения двух одноразмерных величин X=x/L, Т=Т/Т0идр.
Вместе с тем существуют более сложные безразмерные комплексы, включающие три и более размерные величины. Эти безразмерные комплексы не выбирают произвольно, а получают непосредственно из уравнений, описывающих рассматриваемые процессы.
Константы подобия. Основным условием подобия физических процессов является геометрическое подобие. Геометрические фигуры подобны, если они имеют одинаковую форму, их сходственные стороны пропорциональны, а соответственные углы равны.
Понятие подобия распространяют также на процессы движения жидкости - кинематическое подобие или подобие полей скорости, процессы переноса теплоты - тепловое подобие или подобие температурных полей и тепловых потоков и т.п. Во всех случаях обязательным является геометрическое подобие. В случае нестационарных процессов их необходимо рассматривать только в сходственные моменты времени, которые имеют общее начало отсчета и связаны равенством т" /У = kT = idem, где kt - константа временного подобия.
Для подобных процессов все однородные величины (т.е. имеющие одинаковый физический смысл и одинаковую размерность), характеризующие геометрические, временные, физические условия их протекания, связаны между собой константами подобия.
Критерии подобия. Такие комплексы размерных величин, сочетание констант подобия которых равно единице, называют критериями подобия. Критерии подобия сохраняют для всех подобных явлений одинаковые (но не обязательно постоянные) значения. Существенным признаком критериев подобия является нулевая размерность.
Так, величина p/w2 называется критерием подобия Эйлера и имеет одинаковое значение для рассмотренных выше подобных процессов.
Рассматривая уравнения тепломассообмена и движения жидкости, можно получить основные критерии подобия для описания указанных процессов.
Сведем основные критерии подобия в табл. 7.1.
Таблица 7.1
Основные критерии подобия
Символ и формула критерия | Наименование | Физический смысл |
wt Н0=----- L | Критерий гидродинамической гомохронности | Характеризует меру отношения переносного (конвективного) ускорения к ускорению в данной точке |
L3g Gr=----- 2 | Критерий свободного движения среды. Число Грасгофа | Характеризует режим движения при свободной конвекции, являясь отношением подъемной силы, возникающей вследствие разности плотностей жидкости, и сил вязкости в неизотермическом потоке |
w2 Fr =------ gL | Критерий гравитационного подобия (число Фруда) | Характеризует соотношение сил тяжести и сил инерции в потоке |
gL Ga=------- 2 | Критерий полей свободного течения (число Галилея) | Характеризует соотношение сил вязкости и сил тяжести в потоке |
L3g Ar=----------- 2 | Число Архимеда | Характеризует отношение подъемных сил к силам инерции |
Nu = L/f (NuM=L/D) | Безразмерный коэффициент теплоотдачи (массоотдачи). Тепловое (диффузионное) число Нуссельта | Характеризует увеличение теплообмена (массообмена) за счет конвекции по сравнению с чисто молекулярным переносом |
Pr= / а = =(cр/ f (Sc= / D) | Тепловое (диффузионное) число Прандтля (Шмидта) | Характеризует подобие скоростных и температурных (массовых) полей. При v=ap=D поля скоростей, температур и концентраций подобны |
WL wL Pe =--- (Peм=— ) a D | Критерий теплового (массового) подобия. Тепловое (диффузионное) число Пекле | Характеризует соотношение конвективного и молекулярного переносов теплоты (вещества) в потоке |
аt Dt Fo=--- (Fom=---- ) L2 L2 | . Критерий тепловой (массовой) гомохронности. Тепловое (диффузионное) число Фурье | Характеризует связь между физическими свойствами и размерами тела и скоростью изменения в нем полей температуры (концентрации) |
St =------- cpw (Stм=----) w | Критерий конвективного переноса теплоты (вещества). Тепловое (диффузионное) число Стентона | Характеризует соотношение скорости переноса теплоты (вещества) и линейной скорости потока |
Числа Но, Re, Gr, Eu, Er - критерии гидродинамического подобия. Критерии Рг, Ре, St, Fo, Po, Nu - критерии теплового подобия, а ReM, NuM, StM, FoM, -критерии диффузионного подобия. Тепловое число Прандтля Pr = v/a для газов практически не зависит от температуры, давления и определяется только атомностью газов. Для одноатомных газов Рг ~ 0,67, двухатомных Рг ~ 0,7, многоатомных Рг ~ 1. Для капельных жидкостей Рг ~ 102...103 и уменьшается с ростом температуры. Для расплавленных металлов, используемых в качестве теплоносителей (литий, натрий и т.д.), Рг ~ 0,005...0,05. Диффузионное число Прандтля (Шмидта) Sc=v/D > Pr и для жидкостей его значения могут достигать 103 и более. Числа Шмидта Sc для газов в смеси с воздухом с погрешностью до 30% могут быть подсчитаны по формуле Sc=0,1450,556. Для газов коэффициенты диффузии, температуропроводности и кинематической вязкости примерно равны между собой, а безразмерные поля скоростей, температур и концентраций подобны, т. е. имеет место тройная аналогия процессов переноса теплоты, вещества и количества движения (без учета сжимаемости и при безградиентном течении, grad p=0).
В критерии подобия входит характерный линейный размер L. При этом для течения в трубах и каналах принимают L=dr, где dr=4 Af//П -гидравлический диаметр, Af - поверхность поперечного сечения, П -смоченный периметр. Для внешней задачи (при обтекании тела) L есть размер обтекаемого тела и выбирается в зависимости от конкретных условий. Так, при поперечном обтекании цилиндра и сферы L=d. При обтекании плоской пластины (стенки) L=x - расстояние от кромки поверхности до данной точки. Используя критерии подобия, исходные уравнения можно представить в безразмерном виде.
Число критериев подобия будет на единицу меньше числа членов соответствующего уравнения. Условия однозначности к дифференциальным уравнениям определяют единственность их решения и задаются внешним образом по отношению к этим уравнениям. Величины, входящие в условие однозначности, являются независимыми постоянными по отношению ко всем остальным, входящим в основные уравнения. Критерии подобия, составленные из постоянных величин, входящих в условия однозначности, есть определяющие критерии, которые могут быть вычислены уже при постановке задачи. Критерии подобия, составленные из остальных величин, в том числе и переменных, есть неопределяющие критерии. У подобных явлений (процессов) все критерии подобия (определяющие и неопределяющие) численно равны (первая теорема
подобия).
Соответственно, подобны те процессы (явления), которые имеют подобные условия однозначности и одинаковые определяющие критерии (третья теорема подобия). Использование критериев подобия вместо размерных переменных позволяет упростить обработку опытных данных и получение необходимых зависимостей между ними.
Число критериев подобия будет на единицу меньше числа членов соответствующего уравнения.
Условия однозначности к дифференциальным уравнениям определяют единственность их решения и задаются внешним образом по отношению к этим уравнениям. Величины, входящие в условие однозначности, являются независимыми постоянными по отношению ко всем остальным, входящим в основные уравнения. Критерии подобия, составленные из постоянных величин, входящих в условия однозначности, есть определяющие критерии, которые могут быть вычислены уже при постановке задачи. Критерии подобия, составленные из остальных величин, в том числе и переменных, есть неопределяющие критерии. У подобных явлений (процессов) все критерии подобия (определяющие и неопределяющие) численно равны (первая теорема подобия).
Соответственно, подобны те процессы (явления), которые имеют подобные условия однозначности и одинаковые определяющие критерии (третья теорема подобия). Использование критериев подобия вместо размерных переменных позволяет упростить обработку опытных данных и получение необходимых зависимостей между ними.
В отличие от теплопроводности и конвективного переноса теплоты, теплообмен излучением не требует непосредственного контакта тел. Излучение - это процесс распространения электромагнитных волн, испускаемых телом при преобразовании внутренней энергии тела в результате внутримолекулярных и внутриатомных возмущений в лучистую энергию.
Лучистой тепловой энергией называют энергию колебаний непрерывного электромагнитного поля в интервале длин волн от 0,4....0,8 мкм (видимое излучение) до 0,8 мкм...0,8 мм - невидимое (инфракрасное или тепловое) излучение. Ряд характеристик теплового излучения был приведен ранее в главе 6. В этой главе рассмотрим более подробно основные положения и законы теплового излучения и лучистого теплообмена между телами. Дадим сначала основные определения.
Лучеиспускание - процесс превращения внутренней энергии тела в лучистую энергию. Лучеиспускание может быть непрерывным (0< > ) или селективным (отдельные участки спектра для некоторых газов и паров). Лучеиспускание может быть диффузным (энергия излучается равномерно по всем направлениям) или направленным.
Перенос лучистой энергии - процесс ее распространения, определяемый физическими свойствами среды и спектральным составом излучения.
Поглощение - процесс превращения части лучистой энергии во внутреннюю энергию тела.
Отражение лучистой энергии от поверхности тела может быть диффузным (равномерным во всех направлениях) и зеркальным (по законам геометрической оптики).
Совокупность процессов испускания, переноса, поглощения, отражения и пропускания теплового излучения называют лучистым теплообменом. Лучистый теплообмен между телами одинаковой температуры называют равновесным, а такое равновесие - динамическим.
Излучение электромагнитных волн свойственно всем телам. Для большинства твердых и жидких тел спектр излучения непрерывный. Это значит, что эти тела излучают (и поглощают) лучи всех длин волн. Распространение энергии в спектре излучающего тела определяется его температурой. Общее количество лучистой энергии, испускаемой телом в единицу времени, называется лучистым потоком Q, Вт. Поток излучения Q, проходящий через единицу поверхности в пределах телесного угла 2, называется поверхностной плотностью потока излучения E=dQ/dA Вт/м2. Излучение в достаточно узком интервале длин волн называют монохроматическим излучением Q. Отношение плотности потока монохроматического излучения E=dQ/dA в малом интервале длин волн А, к этому интервалу есть интенсивность или спектральная плотность потока излучения J,
J =d E /d, Вт/(м2 -м). Интегральное (в диапазоне длин волн А.=0 ... ) и монохроматическое излучение связаны соотношениями
E = Ed., Q = Qd..
0 0
Излучение, которое зависит только от свойств и температуры тела, называют собственным. Излучение, которое тело получает от внешнего источника, называют падающим.
Закон сохранения энергии для плотности падающего потока излучения Епад имеет вид: Епад = ЕА + ER + ED (см.рис.1).
Поделив это соотношение на величину Eпад, получим А + R + D =1, где А=ЕА/Епад, R=ER/Eпад, D=Ed/Eпад - коэффициенты соответственно поглощения, отражения и пропускания. Эти коэффициенты являются безразмерными величинами, которые характеризуют способность тела поглощать, отражать или пропускать тепловое излучение. В предельном случае:
R = 0; А = 0; D=l (абсолютно прозрачное тело);
R = 1; A = 0; D = О (абсолютно белое тело);
R = 0; А = 1; D = 0 (абсолютно черное тело).
Классификация плотности потоков излучения на поверхности тела
![]() |
Е„ад - излучение, падающее на поверхность тела; Ед - поглощаемый лучистый поток; Er - отражаемый лучистый поток; Ed - лучистый поток, проходящий сквозь тело; Е - собственное излучение; ЕЭф=Е + Er - эффективное излучение тела
Рис.1.
Абсолютно черных, белых и прозрачных тел не существует. Для реальных тел коэффициенты
A, R и D заключены в диапазонах 0<А<1; 0<R<1 и 0<D<1.
Наиболее близки к абсолютно черному телу сажа, снег, бархат (А = 0,97...0,98), к абсолютно белому телу - полированные металлы (R =0,97). Одно- и двухатомные газы практически прозрачны для теплового излучения (диатермичны), A+D~l. Для большинства твердых и жидких тел А + R = 1, D~0.
Общая энергия, излучаемая телом, включает собственное излучение Е и отраженное излучение Er. Сумма собственного Е и отраженного Er излучений носит название эффективного излучения (см. рис. 1):
Еэф = E+ER = Е+(1-А) Епад = Е+(1-А) ЕА/А = Е+ЕА(1/А-1).
Для абсолютно черного тела А = 1 и, следовательно, Еэф = Е = Е0.
Закон Ламберта определяет значение плотности потока излучения Еф в зависимости от его направления по отношению к равномерно излучающей поверхности тела. Наибольшей плотностью обладает поток излучения по нормали к поверхности, его называют яркостью излучения и обозначают Еп. Плотность потока по остальным направлениям Е , определяемая по формуле: Е = Еncos , Еn =Е/, где - угол между направлением излучения и нормалью. Плотность излучения в полусферическое пространство Е в раз больше плотности излучения по нормали к поверхности в единичном телесном угле Е„.
Подставляя Еп =Е/, получим
Е =(Е/)соs .
Закон Ламберта строго справедлив для абсолютно черных тел и
хорошо выполняется для диэлектриков и окисленных поверхностей
металлов при угле <60°.
Плотность потока излучения на сфере радиусом Ro около диф-
фузно (равномерно) излучающего точечного источника мощностью Q равна
E = Q/4ttR02
Нормальная излучательность в раз меньше излучательности абсолютно черного (или серого) тела, определяемого по закону Стефана — Больцмана. Поэтому уравнение закона Ламберта (29.11) принимает вид :
2E =± Cs (Т/100)4 dQ cos qdAx. (29.1 Г)
Последняя формула получена для . потока энергии излучения элемента dA\, но она останется в силе и для монохроматического излучения.
Формула (29.11') является основой для расчета лучистого теплообмена между поверхностями конечных размеров.
Закон Ламберта полностью справедлив для абсолютно черного или серого тела, а для тел, обладающих диффузным излучением,—! только в пределах ф = 0 ~- 60 °. Для полированных поверхностей закон Ламберта неприменим.
Закон Кирхгофа устанавливает связь между степенью черноты s и по-глощательной способностью А серых тел. Рассмотрим лучистый теплообмен между параллельно расположенными неограниченными пластинами: серой 1 с температурой Т и поглощательной способностью А и абсолютно черной 2 с температурой Т0 (рис. 11.4). Примем Т > Т0. Тогда плотность теплового потока, передаваемого серым телом черному, равна
q = Е - Е0А,
где Е - плотность потока излучения серого тела, полностью поглощенная абсолютно черным телом; ЕоА - плотность потока излучения абсолютно черного тела, поглощенная серым телом.
Отраженный от серого тела лучистый поток Е0 (1-А) полностью поглощается абсолютно черным телом. После выравнивания температур тел, участвующих в лучистом теплообмене (Т = Т0), имеет место тепловое равновесие q = 0, Уравнение (11.9) составляет содержание закона Кирхгофа: отношение плотности потока излучения тела Е к его поглощательной способности А одинаково для всех тел и равно плотности потока излучения абсолютно черного тела при той же температуре.
Так как Е = GosT4, Е0 = аоТ4, то А=Е/Е<> = s, т.е. поглощательная способность тела численно равна степени его черноты.
Из закона Кирхгофа следует, что абсолютно черное тело обладает максимальной плотностью потока излучения. Соответственно, тела с малой поглощательной способностью (А) имеют малые плотности потока излучения (е).
Закон Кирхгофа строго справедлив только для условий температурного равновесия, когда температуры излучающих тел равны, а падающее излучение испускается абсолютно черным телом. Уравнение (11.9) получено для интегрального излучения, однако может быть использовано и для монохроматического излучения (ех=Ах).
Тепловой поток Q=qA через цилиндрическую поверхность площадью А=2п £ R есть постоянная величина, равная
Q = -2nA,wf
Тепловой поток на единицу длины стенки Qg = Q/£, Вт/м
3. По приведенным расчетным формулам [ 5,8 ] определить переменные плотности потока излучения нагретой стенки нагревателя; определить переменные количества тепла расходуемого на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С; – количество теплоты q , потребное для нагревания 1 кг газа от температуры Т1 до Т2 ºС:
q = · (Т2 – Т1),
;
– количество теплоты Q, потребное для нагревания G кг газа от температуры Т1 до Т2 ºС:
Q = G · q = G · · (Т2 – Т1), кДж;
– при использовании таблицы 1, порядок определения количества тепла q затраченного на нагрев 1 кг газа от температуры Т1 до Т2 ºС следующий:
а) в начале определяют количество тепла q1, потребное для нагрева 1 кг газа от 0 до температуры Т1 ºС:
q1 = ,
;
б) затем определяют количество тепла q2, потребное для нагрева 1 кг газа от 0 до температуры Т2 ºС:
q2 = ,
;
в) в заключение определяется количество тепла q, затраченное на нагрев 1 кг газа от температуры Т1 до температуры Т2 ºС:
q = q2 – q1 = ,
.
4. Провести эксперимент по пределению плотности потока излучения нагретой стенки нагревателя; определению количества тепла расходуемого на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С.
Порядок проведения эксперимента:
1. Ознакомиться с работой электрических приборов.
2. Согреть в нагревателе воду и довести её до кипения.
3. Опустить в кипящую воду испытуемый образец с антифризом объемом 1дм3 и устойчиво установить (см.рис.2).
Приборы для проведения эксперимента
Граусник спиртовой Емкость с антифризом
![]() |
Испытуемый образец антифриза
Электрический нагреватель
~ 220 В
Рис. 2.
4. Произвести замеры температуры испытуемого образца через каждые 10 секунд и зафиксировать полученные данные на компьютере.
a. Определить исходные данные и результаты полученные в ходе эксперимента для расчета плотности потока излучения нагретой стенки нагревателя; расчета количества тепла расходуемого на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С.
b. Внести полученные в ходе расчета значения плотности потока излучения нагретой стенки нагревателя и количества тепла расходуемого на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С в таблицу на компьютере.
c. По полученным данным провести анализ и записать вывод в электронном виде на компьютере.
5. Построить зависимость теплового потока от температур [ 8 ] в электронном виде на компьютере.
6. Распечатать полученные данные в целом по лабораторной работе на бумагу. Отчет предоставить преподавателю.
Контрольные вопросы:
1.Что определяет закон Ламберта?
2. Какую связь устанавливает закон Кирхгофа для теплового излучения?
3.В каких единицах измерения определяется плотность падающего потока излучения?
4. Какая зависимость плотности теплового потока и температуры?
ЛАБОРАТОРНАЯ РАБОТА № 2
4 часа
Определение теплоёмкости охлаждающих жидкостей
Цель работы: ознакомить с определениями теплоемкостей, определить физические единицы в которых выражаются истинная теплоемкость и различные удельные теплоемкости, определить формулы из табличных данных [12] для воды и других компонентов входящих в охлаждающую жидкость.
Задачи работы: научить определять зависимости теплоемкости и температур, находить среднюю теплоемкость охлаждающей жидкости, удельную теплоемкость охлаждающей жидкости, определять теплоемкость жидкости при температурах от 200С до 800С; производить расчет теплоемкости при нагреве антифриза в интервале заданных температур.
Обеспечивающие средства: емкость для антифриза, электрический нагреватель, измеритель температуры CENTER-350 с жидкокристаллическим дисплеем, компьютер для обработки данных.
Задание: определить истинную и среднюю теплоемкости для воды; определить состав охлаждающей жидкости [ 7 ]; найти удельную, объемную и молярную теплоемкость для воды;
Требования к отчету: отчет предоставляется каждым студентом в конце лабораторной работы после оформления и записи выводов по итоговым данным в соответствии с требованиями по оформлению отчетов [ 11 ].
Технология работы:
1. Подготовить рабочее место для проведения эксперимента.
2. Изучить порядок проведения эксперимента по приведенным расчетным формулам [ 8,12 ].
Теплоемкостью вещества называется количество теплоты, необходимое для нагрева вещества на один градус. Теплоемкость единицы количества вещества называется удельной теплоемкостью. Теплоемкость тела при бесконечно малом изменении его состояния называется истинной теплоемкостью.
Различают массовую , объемную
, киломольную
теплоемкости. Необходимо отметить, что объем киломоля газа при нормальных условиях (t = 0 ºС, Р = 760 мм рт. ст.) равен 22,4 м3. теплоемкость измеряют в кДж/кг·ºС.
Так как теплоемкость газа – величина переменная, зависящая от температуры, то при нагревании на каждый градус изменения температуры расходуются разное количество тепла. Если для нагревания 1 кг газа от температуры Т1 до Т2 ºС затрачивается q кДж тепла, то средняя теплоемкость в пределах температур от Т1 до Т2 ºС определяется по формуле:
Сm = ,
где Сm – средняя теплоемкость ;
q – затраченное на нагрев тепло, кДж;
Т1 – начальная температура, ºС;
Т2 – конечная температура, ºС.
Связь между средней и истинной теплоемкостью находится интегрированием в интервале температур от Т1 до Т2 :
Сm = ,
где С – истинная теплоемкость .
Следовательно, истинную теплоемкость (С) можно рассматривать как предельное значение средней теплоемкости Сm для бесконечно малого интервала температур, т. е. когда Т2 – Т1 стремиться к нулю.
В общем виде зависимость истинной теплоемкости от температуры в аналитической форме можно выразить формулой:
С = а + в · t + d · t2 + … + n · tm , ,
где а, в, d, … n – постоянные, зависящие от физико-химических свойств года и характера процесса.
Таким образом, количество теплоты, подводимое к телу (отводимое от тела), зависит от характера процесса, ее подвода, т. е. теплоемкость зависит не только от температуры, но и от процесса подвода теплоты.
В практике тепловых расчетов используются следующие формулы:
– теплоемкость при подводе теплоты при постоянном объеме (изохорная теплоемкость):
Сv = ,
,
где Сv – теплоемкость при подводе теплоты при постоянном объеме, ;
qv = Const – теплота, подводимая при постоянном объеме, кДж.
– теплоемкость при подводе теплоты при постоянном давлении (изобраная теплоемкость):
Ср = ,
,
где Ср – теплоемкость при подводе теплоты при постоянном объеме, ;
qp = Const – теплота, подводимая при постоянном давлении, кДж;
– теплоемкость для технических газов:
С = а + в · Т, ;
– средняя теплоемкость при изменении температуры от 0 до Т ºС:
=а+
,
;
– средняя теплоемкость при изменении температуры от Т1 до Т2 ºС:
=а+
,
;
– количество теплоты q , потребное для нагревания 1 кг газа от температуры Т1 до Т2 ºС:
q = · (Т2 – Т1),
;
– количество теплоты Q, потребное для нагревания G кг газа от температуры Т1 до Т2 ºС:
Q = G · q = G · · (Т2 – Т1), кДж;
– при использовании таблицы 1, порядок определения количества тепла q затраченного на нагрев 1 кг газа от температуры Т1 до Т2 ºС следующий:
а) в начале определяют количество тепла q1, потребное для нагрева 1 кг газа от 0 до температуры Т1 ºС:
q1 = ,
;
б) затем определяют количество тепла q2, потребное для нагрева 1 кг газа от 0 до температуры Т2 ºС:
q2 = ,
;
в) в заключение определяется количество тепла q, затраченное на нагрев 1 кг газа от температуры Т1 до температуры Т2 ºС:
q = q2 – q1 = ,
.
Приборы для проведения эксперимента
Измеритель температуры
CENTER- 350(с жидкокристал-
лическим дисплеем )
^
Емкость с антифризом
.
.
Испытуемый образец антифриза
Электрический нагреватель
~ 220 В
Рис.3.
Порядок проведения эксперимента:
1. Ознакомиться с работой электрических приборов.
2. Согреть в нагревателе воду и довести её до кипения.
3. Опустить в кипящую воду испытуемый образец с антифризом объемом 1дм3 и устойчиво установить (см.рис.3).
4. Произвести замеры температуры испытуемого образца через каждые 10 секунд и зафиксировать полученные данные на компьютере.
a. Определить исходные данные и результаты полученные в ходе эксперимента для расчета количества тепла расходуемого на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С.
b. Внести полученные в ходе расчета значения плотности потока излучения нагретой стенки нагревателя и теплоёмкости антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С в таблицу на компьютере.
c. По полученным данным провести анализ и записать вывод в электронном виде на компьютере.
3.Построить зависимость теплоемкости охлаждающей жидкости от температур.
4. Произвести анализ и записать выводы по итоговым данным [ 11 ].
5. Распечатать полученные данные в целом по лабораторной работе на бумагу. Отчет предоставить преподавателю.
2. Контрольные вопросы [2,3,5,12 ]:
1. Какое определение удельной теплоёмкости?
2. Что такое истинная теплоемкость?
3. Почему теплоемкость газа при постоянном давлении всегда больше теплоемкости при постоянном объеме?
4. Какая зависимость удельной объемной и молярной теплоемкости?
5. Что показывает уравнение Майера?
ЛАБОРАТОРНАЯ РАБОТА № 3
8 часов
Изучение процесса теплопередачи при теплообмене в устройствах
двигателя внутреннего сгорания
Цель работы: определить теплообменные процессы которые происходят при работе двигателя в различных его агрегатах, найти из технических характеристик двигателей материалы из которых изготовлены его детали и узлы на примере двигателя ЗИЛ – 130, определить теплоемкости для различных применяемых материалов двигателя ЗИЛ – 130, вычислить затраты энергии на излучение, на внутреннюю энергию двигателя ЗИЛ – 130.
Задачи работы: научить определять температуры различных режимов работы двигателя, теплоемкость различных материалов двигателя ЗИЛ – 130 [ 1 ], вычислять затраты энергии на излучение, на внутреннюю энергию двигателя
ЗИЛ – 130.
Обеспечивающие средства: двигатель ЗИЛ - 130 на стенде КИ-5543, измеритель температуры CENTER-350 с жидкокристаллическим дисплеем, измеритель длин, компьютер для обработки данных.
Задание: определить температуры различных режимов работы двигателя, теплоемкость различных материалов двигателя ЗИЛ – 130 [ 1 ], вычислить затраты энергии на излучение, на внутреннюю энергию двигателя ЗИЛ – 130.
Требования к отчету: отчет предоставляется каждым студентом в конце лабораторной работы после оформления и записи выводов по итоговым данным в соответствии с требованиями по оформлению отчетов [ 11 ].
Технология работы:
1. Подготовить рабочее место для проведения лабораторной работы.
2. Изучить материал для расчетов [ 5 стр.49-51 ]. определения расхода тепла на подогрев двигателей лесных машин перед пуском.
– Количество тепла для нагревания двигателя до назначенной температуры: Qдв:
Qдв = G · C ут · ( Т2 – Т1), кДж, (3.5)
где G – масса двигателя. Кг;
C ут – удельная теплоемкость материала блока цилиндров, ;
Т1 – температура цилиндров двигателя перед разогревом, ºС;
Т2 – температура цилиндров после разогрева, перед пуском, ºС.
– Количество тепла для нагревания масла в картере двигателя QM
QM = GM · CM · (Т – Т
), кДж, (3.6.)
где GM – масса моторного масла в картере двигателя, кг;
CM – удельная теплоемкость масла, ;
t и t
– температура масла до и после разогрева, ºС.
Таким образом, для нагревания двигателя теплопередачей перед пуском, необходимое количество тепла определяется по формуле:
Qдв = Qдв + Qм, кДж. (3.7.)
Кроме того, необходимо учитывать количество тепла, теряемое двигателем во время разогрева путем теплопередачи к присоединенным агрегатам Qт:
Qт = q · Fс · , кДж, (3.8.)
где Fс – площадь соприкосновения, м2;
– продолжительность теплопередачи. ч.;
q – тепловой поток, , (
),
q = (Тс – Т
),
где Тс – средняя температура стенки двигателя, ºС;
Т – температура стенки агрегата, присоединенного к двигателю, ºС ( в практике расчетов Тс
Т
).
– Расход тепла теплопередачей на нагрев радиатора Q от температуры Т1 до температуры Т2:
Q = Gрад · C · (T
– T
), кДж, (3.9.)
где Gрад – масса радиатора, кг;
C – удельная теплоемкость материалов радиатора, ;
T и T
– температура радиатора до и после разогрева.
Общий расход тепла теплопередачей на нагрев двигателя, радиатора и сопряженных агрегатов составит:
Qдв.р = Qдв + Qм + Qт + Q , кДж. (3.10.)
Qдв.р = G · C ут · (Т2 – Т1) + GM · CM · (Т – Т
) + q · Fс ·
+
+ Gрад · C · (T – T
), кДж.
3. Изучить порядок проведения эксперимента по приведенным расчетным формулам для термодинамических процессов в двигателе ЗИЛ – 130 [ 5 , 8 ].
Порядок проведения эксперимента.
1. Ознакомиться с работой электрических приборов.
2. Согреть в нагревателе воду и довести её до кипения.
3. Опустить в кипящую воду испытуемый образец с антифризом объемом 1дм3 и устойчиво установить (см.рис.2).
4. Произвести замеры температуры испытуемого образца через каждые 10 секунд и зафиксировать полученные данные на компьютере.
a. Определить исходные данные и результаты полученные в ходе эксперимента для расчета количества тепла расходуемого на нагрев заданного объема антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С.
b. Внести полученные в ходе расчета значения плотности потока излучения нагретой стенки нагревателя и теплоёмкости антифриза без учета потерь на свободную конвекцию в пределах температур от 200С до 800С в таблицу на компьютере.
c. По полученным данным провести анализ и записать вывод в электронном виде на компьютере.
3. Изучить материал для расчетов [ 5 стр.17,12 стр.67-75 ].
4.Построить зависимость теплоемкости охлаждающей жидкости от температур
[ 8 стр.43(рис.1.6.) ].
5. Произвести анализ и записать выводы по итоговым данным [ 11 ].
Распечатать полученные данные в целом по лабораторной работе на бумагу. Отчет предоставить преподавателю.
4. Построить зависимость затрат энергии от режимов работы двигателя внутреннего сгорания [ 1,8 ].
5. Произвести анализ и записать выводы по итоговым данным [ 11 ].
Контрольные вопросы:
- Что такое внутренняя энергия материала в термодинамическом процессе?
- Какой смысл термодинамического процесса двигателя внутреннего сгорания?
- Какие переходные процессы происходят в ходе работы двигателя?
- Какие потери энергии в термодинамическом процессе двигателя внутреннего сгорания?
5. Какие величины входят в уравнение теплового баланса двигателя внутреннего сгорания?
ЛАБОРАТОРНАЯ РАБОТА № 4
6 часов
Изучение процесса теплового излучения от отопительных регистров
Цель работы: дать учебный материал по определению процессов происходящих при отоплении помещений отопительными приборами от централизованного источника теплоты путем перемещения теплоносителя.
Задачи работы: ознакомить с различными способами теплопередачи при помощи перемещения теплоносителя.
Обеспечивающие средства: отопительный регистр. измеритель температуры CENTER-350 с жидко-кристаллическим дисплеем, компьютер для обработки данных.
Задание: Усвоить методику вычисления параметров теплообменных аппаратов. Определить принципы расчета теплообменных аппаратов. Изучить конструктивный и поверочный расчет теплообменных аппаратов[ 2, 3, 5, 8, 12, 13 ].
Требования к отчету: отчет предоставляется каждым студентом в конце лабораторной работы после оформления и записи выводов по итоговым данным в соответствии с требованиями по оформлению отчетов [ 11 ].
Технология работы:
1.Подготовить рабочее место для проведения эксперимента.
2.Изучить порядок проведения эксперимента по приведенным расчетным формулам[ 8 ].
Теплоносители (пар, горячая вода, воздух и т. д.) по тепловым сетям (теплопроводам) поступают к потребителю тепла. В процессе движения теплоносителя по теплопроводу происходят потери тепла и падение температуры теплоносителя вдоль теплопровода. Поэтому задача теплового расчета теплопровода – это определение тепловых потерь, падения температуры теплоносителя вдоль теплопровода и выбор толщины изоляции.
Для практических расчетов потери теплоты qе, отнесенные на единицу длины теплопровода, определяются по формуле:
(9.1.)
где tт – температура теплоносителя, ºС;
tо – температура окружающей среды, ºС;
Rи – термическое сопротивление слоев изоляции, ;
Rн – термическое сопротивление наружной поверхности изоляции, .
Толщина изоляции теплопроводов определяется техническими и технико-экономическими соображениями путем расчетов. При прокладке теплопроводов в рабочих помещениях по условиям техники безопасности температура на его поверхности не должна превышать 40…50 ºС.
3.Изучить материал для расчетов [ 5 ].
Потребителей теплоты в лесной отрасли можно условно подразделить на четыре группы: производственно-технологические процессы; отопление, вентиляция и горячее водоснабжение производственных участков; отопление, вентиляция и горячее водоснабжение административных зданий и культурно-бытовых учреждений; отопление и горячее водоснабжение жилого поселка.