Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
Уравнение с угловым коэффициентом.
k= tg – угловой коэффициент.
Если b=0 то прямая проходит через начало координат. Уравнение примет вид
Если =0, то k = tg = 0. То прямая пройдет параллельно оси ох.
Если =/2, то уравнение теряет смысл. В этом случае уравнение примет вид и пройдет параллельно оси оу.
Общее уравнение прямой.
A, B, C – произвольные числа, причем А и В не равны нулю одновременно.
· Если В=0, то уравнение имеет вид или . Это уравнение прямой, параллельной оси оу. и проходящей через точку
· Если В0, то получаем уравнение с угловым коэффициентом .
· Если А=0, то уравнение имеет вид . Это уравнение прямой, параллельной оси ох.
· Если С=0, то уравнение проходит через т. О (0;0).
Уравнение прямой, проходящей через точку, в данном направлении.
т М (х0;у0).
Уравнение прямой записывается в виде .
Подставим в это уравнение точку М
Решим систему:
Уравнение прямой, проходящей через 2 точки.
К (х1;у1) М (х2;у2)
Уравнение прямой в отрезках.
К (а;0); М (0;b)
Подставим точки в уравнение прямой:
Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору.
М0 (х0;у0).
Возьмем произвольную точку М (х;у).
Т.к. , то
Нормальное уравнение прямой.
Уравнение прямой можно записать в виде:
Т.к. ; , то:
Угол между прямыми.
Дано: прямые L1 и L2 с угловыми коэффициентами
Требуется найти угол между прямыми:
Эллипс. Определение. Вывод канонического уравнения.
Эллипсомназывается
геометрическое место всех
точек плоскости, сумма
расстояний от которых до
до фокусов есть величина
постоянная, большая, чем расстояние между фокусами.
Пусть М (х;у) – произвольная точка эллипса.
Т.к. MF1 + MF2 = 2a
Т.к.
То получаем
Или
Гипербола. Определение. Вывод канонического уравнения.
Гиперболойназывается множество всех точек плоскости, модуль разности расстояний от каждой из которых до фокусов есть величина постоянная.
Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF1 – MF2|=2a или MF1 – MF2=±2a,
Парабола. Определение. Вывод канонического уравнения.
Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от фокуса, и директрисы. Расстояние между фокусом и директрисой называется параметром параболы и обозначается через р>0.
Пусть M(x;y) – произвольная
точка M с F. Проведем отрезок
MN перпендикулярно
директрисе. Согласно
определению MF=MN.
Поверхности вращения.
Поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая кривая L лежит в плоскости Oyz. Уравнение этой кривой запишутся в виде:
Найдем уравнение поверхности, образованной вращением кривой L вокруг оси Oz.
Возьмем на поверхности точку
M (x;y;z). Проведем через точку
М плоскость, перпендикулярную
оси oz, и обозначим точки
пересечения ее с осью oz
и кривой L соответственно O1 и N.
Обозначим координаты точки
N (0;y1;z1). Отрезки O1M и O1N
являются радиусами одной и той же окружности. Поэтому O1M = O1N. Но O1M = (x2+y2)0.5, O1N=|y1|.
Следовательно, |y1|=(x2+y2)0.5 или y1=±(x2+y2)0.5. Кроме того, очевидно, z1=z.
Следовательно – искомое уравнение поверхности вращения, ему удовлетворяют координаты любой точка М этой поверхности и не удовлетворяет координаты точек, не лежащих на поверхности вращения.