Приборы, анализирующие тембр звука
Впервые музыкальные звуки и звуки голоса были подвергнуты анализу знаменитым ученым Гельмгольцем около ста лет тому назад при помощи сконструированного им набора полых шаров-резонаторов. Резонаторы Гельмгольца представляют собой стеклянные шары, имеющие отверстие наружу с одной стороны и небольшую выступающую воронкообразную трубку —с другой. Рис. 13. Каждый такой шар способен резо-
![]() |
![]() |
\0.5 |
который имеется у колеблющейся струны (сравни, например,, рис. 11 с рис. 12 и 25). Спектр голоса меняется самым кардинальным образом. Основной тон оказывается в ряде случае» небольшим, а некоторые отдельные обертоны или группы обертонов выглядят резко усиленными. Это изменение исходного спектра источника колебаний связано с явлением резонанса дек или трубок, коробок и др. резонаторов, в зависимости от |
I
И (П.8
i |
J i
Рис. 11. Схема иллюстрирует рождение обертонов (верхний рисунок) их графическое изображение — спектр и уменьшение амплитуды обертонов с возрастанием их порядка (средний рисунок) и, наконец, звучание на слух гармонического ряда обертонов (нижний рисунок). Второй обертон, который по частоте вдвое больше основного тона, называется октавным обертоном, потому что расстояние в октаву как раз соответствует удвоению частоты. Третий звучит квинтой в октаву и т. д.
III |
О 500 WOO 15ЩЖ 2500 30003500 Частота
Кларнет
f.B\
а | | | | | | i |
О 500 1000 1500 2000 2500 ЗОЮ 35Ю Частота
Рис. 12. Сложные кривые, получающиеся ори записи музыкального звука, и спектры этих звуков. Вверху—-рояль, внизу — кларнет. Видны области усиления обертонов — форманты, от которых зависит тембр этих инструментов (по Н. Гарбузову).
Рис. 13. Современный спектроанализатор на катодно-лучевой
трубке и набор резонаторов Гельмгольца — полых шаров
различного объема.
нировать на звук определенной высоты. Прислоняя воронкой резонаторы к уху, Гельмгольц выслушивал различные музыкальные звуки и нашел те характерные усиленные тоны, которые определяют тембр того или иного инструмента. Им же были впервые обнаружены характеристические тоны, определяющие звучание того или иного гласного звука.
В настоящее время имеется ряд аппаратов, которые позволяют производить точный анализ звуков. Одним из методов анализа звука является, например, запись его на особом приборе — осциллографе, с последующей расшифровкой этой записи. Как известно, звуковые колебания можно перевести в другого рода колебания — механические, электрические — и записать их. Впервые звук при помощи своего фонографа записал Эдисон. На воске его валика получалась сложная периодическая кривая, в которой нашло свое
отражение все множество колебаний, составляющих тембр звука. Конечно, эта механическая запись груба и ее воспроизведение было некачественным. Современная звукозапись, основанная на переводе звуковых колебаний в электрические, на совершенной аппаратуре позволяет получать на звуковой дорожке наших долгоиграющих пластинок очень точное и полное
изображение всех колебаний, составляющих, например, тембры оркестрового звучания и голоса солиста. Одна суммарная кривая звуковой дорожки пластинки несет в себе все это многообразие звучностей!
, - \Э 3 |
Однако для анализа звука электрические колебания переводят не на воск, как'при трамза-писи, а на фотопленку или специальную бумагу при помощи специальных ( точных аппаратов — осциллографов-самописцев. Получающуюся сложную периодическую кривую затем подвергают анализу, чтобы выяснить, из каких простых колебаний (обертонов) она составлена. В i результате такого анализа
стых (т. е. иа составляющие его обертоны). 1—3—5 и т. д.— порядок обертонов. |
Рис. 14. Разложение сложной можно получить точное ' изобра-кривой звука на серию про- жение всех простых ' колебании, колебаний — синусоид т. е. всех обертонов, входящих всостав сложного звука. Можно «увидеть» его тембр.
Однако анализ кривой— сложное и отнимающее долгое
Еремя дело. Чаще всего для разложения сложного звука на простые составляющие, служат электронные приборы — спектрометры, или спектроанализаторы. Построенные по принципу фильтров, они позволяют на экране электронно-лучевой трубки, похожей на телевизионную, получать в виде серии светящихся столбиков картину спектра звука. Поющий может наблюдать непосредственно свой спектр в момент фонации.
Явление резонанса
Остановимся на явлении резонанса, которое является основным механизмом, изменяющим первоначальное звучание источника звука в различных музыкальных инструментах. Резонанс является причиной усиления различных групп обертонов,
Рис. 15. Современный спектрометр (по В. Морозову). При пении на шкале (справа, внизу) в виде светящихся столбиков различной величины появляется спектр звука (обертоиовый состав).
in .liidli |
Б MI П Ж IV V VI |
МАГ | сзч |
Рис. 16. Схема получения спектра на спектрометре. Записанный на магнитофоне МАГ звук подается на спектрометр СЗЧ, который дает спектральную картину звука. Б, М, I и т. д. отд. обозначают октавы, к которым относятся обертоны. Высота столбиков соответствует силе соответствующего обертона. Область высокой певческой форманты выделена пунктиром (по В. Морозову).
т. е. основным темброобразующим механизмом. Явление резонанса в быту общеизвестно.
Резонанс происходит тогда, когда, например, фортепиано с нажатой педалью отвечает нам сильной раскачкой той струны, тон Которой совладает со звуком, извлеченным на другом инструменте. (Правда, раскачивается еще несколько струн, но значительно слабее). Возникновение отзвука на одном инструменте иод влиянием звучания второго инструмента и есть резонанс. Зто явление весьма важно для понимания многих феноменов, связанных с певческим голосом, и потому должно быть хорошо понято и глубоко продумано каждым занимающимся вокальным искусством. Понимание резонанса необходимо не только для того, чтобы правильно оценить работу так называемых «верхнего и нижнего резонаторов» певцов, но й для того, чтобы разобраться в формировании тембра певческого голоса, и образовании звуков речи вообще.
В чем сущность данного феномена, и почему на фортепиано сильно ответила только одна струна, а не все, хотя звуковые волны от другого инструмента дошли до всех его струн? Как известно, струна, натянутая на колок, издает звук определенной высоты, и это зависит от ее упругости, длины, толщины и характера материала, из которого она сделана. Каждая струна фортепиано имеет свою высоту звучания, т. е. свою собственную частоту колебаний. Звуковые волны, исходящие от другого инструмента, действительно достигают всех струн фортепиано, и под влиянием первой волны они все выйдут из покойного состояния и начнут колебаться. Однако под влиянием многочисленной серии волн раскачается сильно только та струна, собственная частота колебаний которой будет совпадать с частотой подходящих волн. Только при этом совпадении частот резонирующая струна будет получать в такт своей собственной раскачки с каждой новой подходящей волной — новую маленькую порцию энергии, и станет постепенно раскачиваться все больше и больше. В других струнах от этих малых порций ритмически поступающей энергии (т. е. периодических толчков) раскачки не произойдет, потому что толчки будут осуществляться не в такт собственным колебаниям струн. Если качели подталкивать в такт — они раскачаются, если не в такт, они, качнувшись от первого толчка, будут остановлены вторым или третьим. Если собственная частота струны ровно вдвое, втрое и т. д. больше, чем частота подходящих волн, то такие струны тоже раскачиваются, получая подталкивание в такт через одно, два и т. д. колебания. Но в этом случае раскачка получается менее сильной. Поэтому фортепиано отвечает не только раскачкой той струны, которая по собственной частоте совпадает с частотой подходящих волн, но и слабой раскачкой октавной струны к этому тону, квинтовой струны через октаву и т. д., со-
ставная часть которых в 2, 3, 4 и т. д. раза больше частоты подходящих волн. Поэтому явление резонанса возникает не только в случае совпадения основных тонов, но и обертонов Только в этом случае раскачка получается менее сильной.
Теперь рассмотрим вопрос о том, произошло ли усиление звука в результате резонанса струны, и откуда взялась энергия в резонирующей струне? Легко понять, что для слушающего данный звук оказался усиленным, так как одновременно со звуком от другого инструмента до его уха доходят и колебания от резонирующей струны. Однако столь же очевидно, что энергию для своих колебаний резонирующая струна получила от другого инструмента, что эта энергия не родилась з ней, а лишь постепенно накопилась, аккумулировалась, аналогично энергии, накапливающейся от нашей руки при раскачивании в такт качелей. Следовательно при явлении резонанса струны фортепиано звук усиливается за счет отдачи накопленной энергии. Сначала звуковая энергия переходит из воздуха в механические колебания струны (раскачка), а затем снова отдается, т. е. имеется переход механической энергии колебания в звуковые волны. Между тем в других струнах эта энергия не аккумулируется (один толчок раскачивает, а второй — останавливает). При резонансе получается усиление звучания, хотя новой энергии тут не возникает, не добавляется. В приведенном примере мы коснулись для наглядности резонанса в струнах. В голосовом аппарате мы имеем дело с резонансом объемов воздуха.
Резонаторы и деки
Под резонатором в акустике подразумевается какой-либо объем воздуха, заключенный в упругие стенки и имеющий выходное отверстие. Резонатором он называется потому, что если возбудить колебания находящегося в нем воздуха, то резонатор издаст звук совершенно определенной высоты. На этом принципе построены резонаторы Гельмгольца.
Высота звука, которая родится в резонаторе, зависит от объема заключенного в нем воздуха, формы резонатора и размеров выходного отверстия. Этот тон называется собственным тоном резонатора. С точки зрения акустики, стакан, полый шар, трубка, бутылка являются резонаторами. Чем меньше размеры резонатора и вместе с этим объем заключенного в нем воздуха, тем выше тон, который родится в резонаторе — его собственный тон. Чем меньше выходное отверстие, тем ниже собственный тон.
В основе этого явления лежит образование так называемой стоячей волны, которая «бегает» в стенках резонатора от
} 169
его дна до края и обратно. Поскольку скорость распространения волны в воздухе постоянна, то за то же самое время в небольшом объеме воздуха волна успеет совершить много полных колебаний (т. е. собственный тон будет иметь высокую частоту), а в 'больших объемах — мало (т.е. небольшую частоту). Этим объясняется то явление, что собственный тон резонаторов небольшой величины высок, а большой величины — низок. На явлении собственных колебаний, возникающих в трубах, основано устройство органов, где самые низкие звуки возникают в трубах, имеющих длину несколько метров, а самые высокие — 1—2 см.
Когда мы наливаем из крана воду в бутылку, мы слышим, как звук по мере заполнения ее водой становится все выше и выше, напоминая свисток тогда, когда .вода доходит до горлышка. Это связано с уменьшением столба колеблющегося воздуха, причем источником колебаний является сотрясение его • падающей струей воды.
Явления резонанса в резонаторах возникают по тому же принципу, что и в струнах. Резонатор «отвечает», т. е. в нем получается раскачка воздуха тогда, когда над ним издается звук, совпадающий по частоте (высоте) с его собственным тоном. Поскольку в этом случае собственная частота резонатора совпадает с частотой подходящих к нему волн, каждая новая волна подталкивает в такт «бегущую» в резонаторе собственную волну, в результате чего раскачка становится все больше и больше. Энергия накапливается. Резонатор начинает «отзвучивать». Отзвучивает он и на обертоны собственного тона, но только менее сильно. При несовпадении частоты подходящих к резонатору волн с собственными колебаниями, возникающими в резонаторе, — с его собственным тоном, раскачки не получится (как не раскачиваются качели, если их подталкивать не в такт). Как и при резонансе струн, сам резонатор не добавляет энергии, а лишь аккумулирует, накапливает ту энергию, "которая содержится в подходящих к нему волнах. Потом резонатор отдает ее в наружную среду, гудит, отзвучивает, отчего звук для слушателя становится громче. Рис. 17.
В голосовом аппарате человека имеется множество полостей и трубок, в которых могут развиваться явления резонанса. Трахея и бронхи, полость гортани, глотки, рта, носоглотки, носа и окружающие его мелкие придаточные полости обладают достаточно упругими 'Стенками для того, чтобы в них возникли явления резонанса. Одни из них по своей форме и размерам неизменны, даны от природы, следовательно всегда усиливают одни и те же обертоны, порождают постоянно присутствующие в голосе призвуки и не могут быть специально приспособлены для усиления каких-либо других обертонов (например, нос и его придаточные 'полости). Другие легко меняют свою форму
и размеры, например ротовая полость, глотка, надсвязочная полость гортани, т. е. могут использоваться в широких пределах для изменения исходного тембра путем резонаторного усиления определенных групп обертонов. Именно благодаря резона-торным явлениям в спектре голоса человека получаются «пики», усиления отдельных обертонов, которые часто оказываются сильнее основного тона (см., например, рис .16 и 25).
В струнных инструментах основным механизмом, меняющим исходный тембр струн, являются деки. Под деками понимаются специально сконструированные деревянные доски, образующие, например в скрипичных инструментах, их корпус. Деки отдают воз- 3_ душной среде те колебания, которые они получили от источника колебаний —
от струн. Однако они явля-
ются не только передатчиками, но и трансформаторами тембра исходного звука струн, Д |
Рис. 17. Опыт Гельмгольца, доказывающий наличие колебаний в резонаторе. В бутылке (резонатор) — 1 вместо дна натянута перепонка — 2, к которой свободно прикасается подвешенный на
ка резонирует, перепонка под влиянием раскачки воздуха внутри бутылки начинает колебаться, а шарик — отскакивать от нее. |
Для того чтобы понять, нйтке легкий шарик-3. Когда бутыл-как это происходит, мы позволим себе привести следующий пример. Всем ; известен ксилофон — инструмент, состоящий из отдельных деревянных дощечек — брусочков различной длины, которые при ударе их палочкой издают музыкальный тон определенной высоты. Этот тон зависит от длины 'брусочка ,его толщины и материала, из которого он сделан. Соответственно и резонировать дощечка будет на этот тон. Деки можно себе представить как сумму таких дощечек, скрепленных воедино и имеющих у разных инструментов различную форму.
Звук от колеблющейся струны, имея вид убывающего частокола амплитуд, передается декам. Последние начинают колебаться с присущими им собственными колебаниями, в результате чего излучается в пространство не столько тот спектр, что рожден струной, сколько тот, который свойствен декам, корпусам инструментов. Общеизвестно, что ценность скрипки определяется особенностями строения ее корпуса, ее дек, а не качеством натянутых на нее струн. То же относится и к фортепиано, где кроме механики ценится (прежде всего то, что дает красивый звук, т. е. качество деревянных конструкций, дек.
В результате колебания дек, те или иные обертоны, хорошо резонирующие в деках, могут оказаться относительно сильнее других. Так, из убывающего частокола частот, характерного для
![]() |
герпетические тоны Гельмгольца, по которым наше ухо к различает один гласный звук от другого. Есть и другие характерные области частот, в некоторых гласных их четыре-пять, |
юоо |
колебаний струны, образуется спектр с отдельными усилениями, как говорят «пиками», тех или иных частот (см. рис. 12).
В голосовом а'шпарате не существует подобных дек. Механизм изменения исходного тембра, рожденного в голосовой щели, не связан с вибрациями груди, нёбного свода или каких-либо еще частей организма, как об этом иногда пишут в старых руководствах. Изменение исходного тембра гортани целиком зависит от резонаторных явлений, развивающихся в полостях голосового аппарата. В настоящее время исследован как звук, возникающий в голосовой щелк, так к воздействие на него резонаторных полостей.
Звук голосовой щели
Впервые звук, рождающийся в голосовой щели, был услышан у людей, разрезавших себе горло над голосовыми связками при попытке к самоубийству, но оставшихся живыми. У этих людей голосовая щель непосредственно смотрела в рану, и поскольку нервы, заведующие движениями голосовых и других гортанных мышц, были сохранены, то работа голосовых связок не была нарушена. Позднее этот звук связок был изучен при операциях на гортани. Он был 'записан и акустически проанализирован.
На слух этот голос, исходящий непосредственно из голосовой щели, по тембру резко отличается от нормального, выходя-'щего изо рта. Прежде всего изменен его индивидуальный тембр, он неузнаваем, носит «пищащий» характер, и, кроме того, он яе имеет формы того или иного гласного звука. При попытке сказать разные гласные или слова голосовая щель издает однородный тон. Губы и язык делают соответствующие артикуляционные движения, но поскольку звук гортани идет непосредственно в раневое отверстие, а не поступает в ротоглоточный канал, никакого звука изо рта не выходит. Этот факт лишний раз доказывает, что гортань родит звук индифферентный, не имеющий еще формы того или иного гласного, и что характер речевого звука исходный тембр гортани получает проходя через надставную труб-*к у, т. е. по ротоглоточному каналу. Между тем люди зкали это давно. В старые времена преступникам вырезали язык, при этом они лишались возможности произносить различные гласные и согласные, лишались дара речи, сохраняя голос.
Форманты гласных звуков речи
Как известно еще со времен Гельмгольца, каждый гласный звук содержит в своем обертоновом составе две основные, относительно усиленные области частот, так называемые харак-
Рис. 18. Вверху — спектр гортани, состоящий из большого числа убывающих по амплитуде обертонов. Внизу спектры гласного звука е, взятого на разной высоте (слева 100 гц, справа 200 гц). Формантные области 700 гц и 1400 гц остаются Ьостояниыми, несмотря на изменение высоты основного тона.
![]() |
Рис. 19. Схема образования из первичного спектра гортани спектра звука е. Показаны полости рта и глотки, где в результате резонанса усиливаются обертоны, имеющие формантное значение, т. е. придающие звуку характер гласного е. |
но основные — две. Эти области частот, характеризующие зву
чание каждого гласного звука, носят название формант
гласных. Каждый глас
ный звук характеризуется 1400
двумя такими главными об
ластями усиления, 'причем
одна из них обязана своим
происхождением резонан
су тлотки, а вторая — ре
зонансу ротовой поло
сти. Именно этим и '.опре
деляется необходимость при
переходе ' от ' гласного к
гласному перемещать язык
из одной позиции в другую.
Язык является тем ( основ
ным артикуляционным ор
ганом, перемещение которо
го создает в ротовой и гло
точной полостях ' нужные
для образования формант
объемы воздуха. Именно по
этому невозможно при едином положении языка произнести
разные гласные. Единое положение языка создаст единые по
своему объему полости в глотке во рту '(следовательно, одина-
17J
![]() |
ковый их резонанс), форманты не смогут образоваться, и гласные не возникнут.
Формантные области для гласных русского языка по Фанту равны: а — 700 и 1000 гц, 0 — 535 и 780 гц, у — 300 и 650 гц, е _ 440 и 1800 гц, и — 240 и 2250 гц.
к~370 |
Объемы глоточной и ротовой полостей находятся по величине в обратных отношениях и изменяются при 'произношении разных гласных в последовательности и—е—а—о—у. На и ро-
Рис. 20. Положение артикуляторных органов при произнесении речевых гласных и, а, о, у по нашим рентгенограммам и опектры этих гласных. Спектры сняты в акустической лаборатории Московской государственной консерватории им. Чайковского при содействии Д. Юрченко и Е. Рудакова. На спектрах хорошо видны формантные области гласных, а на рисунках — полости, в которых эти форманты возникают. Ясно различается перемещение языка при переходе от одного гласного к другому. Надгортанник следует за корнем языка, и вход в гортань меняет свои размеры.
товая полость наименьшая по объему, так как спинка языка поднята к .передней части твердого нёба. Эта малая полость резонирует на 3000 гц. Тут, в этой маленькой полости, образуется ротовая форманта гласного и. На гласном и глоточная полость, наоборот, наибольшая. Она резонирует на звук высотою в 400 гц, и в ней образуется глоточная форманта гласного и. Ротовая полость увеличивается при переходе от гласного и к гласному у в последовательности и—е—а—о—у. Глоточная же уменьшается при переходе от и к е и а, на о и у снова увеличивается.
Таким образом, переход от 'гласного к гласному есть тембральное изменение звука, обязанное своим происхождением изменению резонанса ротоглоточных полостей. Между тем каждый из нас легко различает не только
одАшт/ину одАштгину
ч «сз
1 1 | i | ||||
иг |
§ „
ШНОНбОЛ
«ca |
шнвнйоА кшюшзвь |
agffi/шипу
Б
01 Ж
3 £ о
1| v ° |
о Щ
S К ,
S !
О r
а га £•
О. О о « О В-
^ О i>i К Ь- О
Gt; -G- о. к о н
С} fO О- О
Tf О Ч
S3 и о. s
0J Ч С О —
G сн н &• га
га |
Й
Га
Се
3^
Is
<N 3
о «
гласный или согласный звук, но также и то, кто их прризносит: мужчина или женщина, бас, баритон или тенор. Это,* различие зависит не только от разной высоты, на которой говорят мужчины, женщины или дети, но и от формант гласных, которые у детей и женщин сдвинуты вверх по диапазону. Рис. 22 и 23. Мы различаем также, знакомый 'или незнакомый человек произнес слово. Подобные особенности тембра связаны с внеформант-ными областями спектра, т. е. со всем остальным набором обертонов голоса. Этот остальной набор обертонов, характерных для того или иного человека, создает индивидуальный тембр его голоса.
Формантные области гласных, имеющие ка спектрах вид усилений, или «пикоб», как мы уже писали выше, представляют собою накопленную и сохраненную благодаря резонансу энергию обертонов, рожденных в голосовой щели. Энергия звука гортани, слагающаяся из энергии основного тона и всех его обертонов, поступая в резонаторные полости надставной трубки, идет на раскачку резонаторов, в которых она накапливается. Потому эти области спектра, топавшие в резонанс, оказываются усиленными по сравнению с другими, что особенно заметно на фоне общей потери силы звука в надставной трубке. Таким образом, исходный спектр гортани в надставной трубке сильно меняется, и в наружное пространство выходит звук, окрашенный иначе, чем он был при возникновении в голосовой щели.
Из сказанного ясно, что у человека есть два механизма изменения тембра, две возможности воздействовать на тембр голоса: во-первых, можно менять исходный тембр, рождающийся в голосовой щели (например, грудной и фальцетный звук, жесткая или мягкая атака звука); и, во-вторых, менять форму и размеры резонансных полостей по пути движения звука от голосовых связок до губ.
Форманты музыкальных инструментов и певческие форманты
Мы разобрали выше, образование речевых формант гласных и коснулись термина форманта только в связи с гласными. Однако этим термином обозначается любое усиление обертонов в спектре, формирующее то или иное характерное качество темб- ,« ра звука.
Если на слух мы различаем особенности, характеризующие тембры какого-либо музыкального инструмента, по которым мы легко отличаем его от другого, то причиной этому является ,| наличие соответствующего набора обертонов, определяющих специфику его звучания. Этот набор усиленных обертонов, характерных для данного инструмента, формирующих особенность | его тембра, называется набором формант этого инструмента. Таким образом, термин форманта (от слова форма, фор-
мирова^ь) применяется там, где имеются усиленные обертоны, формирующие характерную окраску тембра данного звука или инструмента. Особым набором; обертонов-формант характеризуется, например, звучание гобоя, флейты, кларнета, фагота и т. п. Знания характерных усиленных частот-формант того или иного инструмента позволяют воссоздавать его звучание из набора отдельно взятых и вместе звучащих тонов. Так могут быть искусственно созданы тембры различных музыкальных инструментов.
Этой возможностью с давних пор пользуются, например, при конструировании органов, где, наряду с клавиатурой, имеются регистры, воспроизводящие из соответствующего набора звучания ряда органных труб тембры звучания многих инструментов.
Конечно, особенности звучания инструментов не ограничиваются присутствием определенного набора характерных обертонов-формант, они также зависят от характера начала звука, его длительности, от особенностей изменения силы звука, особенностей вибрато. Например, звук фортепиано начинается с удара молоточка по струне и затем всегда затихает. Кроме того, он не имеет такого вибрато, как скрипичные инструменты. Скрипка же или виолончель могут начать звук с едва слышного pianissimo и развернуть звучание до forte, менять эту динамику на протяжении звучания по своему выбору, так же как и менять вибрато. Само собою понятно, что это также отличает звучание одного инструмента от другого, однако основную специфику тембра всегда дает набор соответствующих характерных обертонов-формант.
Спектр звука речевого голоса человека состоит из усиленных обертонов, определяющих звучание его в форме того или иного гласного звука речи, т. е. формант гласных и остального набора обертонов, расположенного во внеформант-ных областях и характеризующего индивидуальные особенности звучания голоса того или иного человека. Конечно, неодинаковое звучание речи у разных людей зависит и от многих других признаков: от высоты, на которой человек говорит, от мелодики речи, ее темпа, богатства интонаций и индивидуальных особенностей артикуляции, от динамических различий и т. п. Наше ухо чутко ловит эти особенности и по ним опознает говорящего человека. Если особенности речи выходят за пределы норм данного языка, то мы их воспринимаем как акценты, как искажения.
При переходе от речи к пению высота каждого звука вместо скольжения по звуковой шкале вверх или вниз приобретает устойчивость, слоги растягиваются и в голосе, как правило, появляется приятная вибрация. Голос при обычном бытовом пении мало разнится по тембру от речи, так как люди используют для этого привычные речевые установки голосового ап-
парата. Однако среди всех людей, которые способны пеяъ, наш слух легко выделяет тех, кто имеет певческий голос. Следовательно, в певческом голосе содержатся определенные особенности, которые и составляют специфику певческого звука. Они относятся не только к силе звука или звуковысотным возможностям (громко и высоко могут петь многие), сколько к тембровым качествам. Эти тембровые качества особенно хорошо выражены у так называемых от природы поставленных голосов и у-голосов, профессионально обработанных.
Хорошо поставленный певческий голос в современной европейской оперной манере отличается, кроме большой силы и больших звуковысотных возможностей, ровностью красивого1 вокального тембра, что делает звук певческого голоса красивым, льющимся и ровным, поддается слуховому анализу.
Тембр хорошо поставленного певческого голоса характеризуется на слух рядом особенностей: он всегда звучит ярко, звонко, блестяще, с большим количеством «металла» и вместе с тем округло, мягко, объемисто. Кроме того, он всегда имеет льющийся характер. Певческий звук хорошо тянется и имеет приятную, ровную пульсацию — вибрато, с чем и связано, как показывают эксперименты, его свойство — литься. Если звук лишить вибрато, то он приобретает «прямой», безжизненный характер. Такой прямой, «палкообразный», по выражению певцов, звук для пения неприемлем, так как голос лишается красоты. Вибрато воспринимается нами как составная часть тембра звука.
Когда ученые стали анализировать спектр хорошо поставленного певческого голоса, то было выяснено, что те его особенности, которые мы хорошо слышим в тембре, как метал-личность и блеск — с одной стороны, и мягкость, округлость — с другой, зависят от усиления в спектре голоса соответственно двух областей обертонов. Эти области усиления частот, характеризующие специфический певческий тембр голоса, были названы певческими формантами.
Низкая и высокая певческие форманты
Приоритет в открытии певческих формант принадлежит отечественной науке. В 1927 году Казанский и С. Н. Ржевкин установили, что в спектре хорошо поставленного мужского певческого голоса всегда присутствуют усиленные обертоны с частотой в области 517 гц. Эта форманта получила название низ-
1 Понятие красоты—относительно. Для одних народностей красиво то, что для других может быть эстетически неприемлемо. Мы говорим здесь и далее о красоте тембра с точки зрения слуха современного европейца, воспитанного на классической оперной музыке.
кой певческой форманты. С ее присутствием связано округлое, полное и мягкое звучание певческого голоса. Если эту область «вырезать» из звучания голоса, отфильтровать ее, то звук обеляется, приобретает плоский характер.
Позднее, в 1934 году, В. Бартоломью', работая на более совершенной аппаратуре, обнаружил, что в хорошо поставленном голосе всегда присутствуют группы значительно усиленных: обертонов в высокочастотной части спектра. Эта область получила название высокой певческой форманты.
Для низких голосов усиленная высокочастотная область, равна 2500—2800 гц, для более высоких она доходит до 3200 гц. Эта область, то есть высокая певческая форманта, — привносит в звук яркость, блеск, металл. От ее присутствия зависит «дальнобойность», полетность звука, способность «пробивать» оркестр.
Современная аппаратура позволяет удалить из тембра высокую певческую форманту. Для этого на пути звука ставится специальный фильтр, пропускающий все частоты спектра, за исключением области высокой певческой форманты. Голос, иа которого «вырезана» высокая певческая форманта, становится глухим, далеким, сразу теряет блеск, приобретает непевческий характер. Подобные опыты были проделаны Е. А. Рудаковым в акустической лаборатории Московской консерватории и В. П. Морозовым в лаборатории Ленинградской консерватории. Интересно отметить, что голос без высокой певческой форманты не только теряет яркость, чистоту, красоту тембра, но и значительно уменьшается по силе. «Вырезание» из спектра голоса других областей частот подобного резкого действия на_ тембр и силу звука не оказывает. Это явление связано с особенностями восприятия звука ухом человека.
Исследования показали, что у мастеров вокального искусства в области высокой певческой форманты сосредоточено до 30—35% всей звуковой энергии голоса. У неопытных певцов^ а также в речи, даже когда она «поставлена», т. е. у дикторов и актеров, высокая форманта достигает только 5—7%. Сотрудниками акустической лаборатории Московской консерватории создан электронный прибор стрелочного типа, показывающий процент содержания в голосе высокой певческой форманты. Певец может петь в микрофон и видеть на шкале прибора, каков процент содержания высокой форманты в звуке, который он в данный момент извлекает. Появилась возможность контролировать характер тембра не только слухом, но и зрением.
В лаборатории Ленинградской консерватории В. П. Морозовым высокая певческая форманта была выделена из голося поющего певца в изолированном виде. Она воспринимается
1 Bi a r t о 1 о m e w W. A Physical Definition of 'Good Voice—Quality' in the Male Voice (I. Acoust. Soc. of America, 1934, No. 6).
как высокий свистковый тон на высоте 0а4. Этот то^ слегка вибрирует, напоминая трель. На слух он приятен, не? раздражает ухо, несмотря на его большую звонкость и высоту. Эмпирически, на слух педагоги давно научились ценить Появление в голосе ученика «звоночка», «серебра», т. е. появление в спектре этой области усиленных частот.
2000 3000 |
3000 |
Случай I |
torn гот Случай Р
Рис. 24. Два схематические варианта построения спектра голоса: когда основная энергия сконцентрирована в области низких частот (случай 1) и когда она сконцентрирована в области высокой певческой форманты (случай II). Энергия звука, равная суммарной энергии всех обертонов, в обоях случаях равна, а акустический эффект — различный. В случае II звук будет неизмеримо громче, чем в случае I.
Появление серебристости тембра, металла, всегда служило показателем правильной организации певческого звука. Голос, сформированный в этом характере, всегда оказывался хорошо слышимым в больших помещениях. Слушание высокой певческой форманты, выделенной в изолированном виде, хорошо тренирует слух на умение выделять из тембра голоса эту область частот.
Таким образом были выяснены загадки певческого тембра и стало понятно, от каких областей усиления обертонов зависит качество блеска и яркости и от каких — объемистость, «мясистость», округлость.
Если сравнить спектр гласного звука, произнесенного в речи и спетого поставленным голосом, то в спектре певческого звука кроме двух речевых формант будут присутствовать высокая и низкая певческие форманты, которые и сообщают ему специфически певческий характер звучания. Чем интенсивнее звук, тем большую роль в спектре играют певческие форманты и тем меньше выделяются форманты гласных. Поэтому при большой мощности звука гласные становятся хуже различимыми. В этом случае особенно важным становится начальный момент формирования звука, его становления, который в основном и определяет в нашем слуховом представлении характер гласного. Если на магнитной пленке вырезать этот момент становления
НИМ «^ 4«i | ||
.... £'r-? |
--•:-'; . -
![]() |
![]() |
![]() |
„7ГПЕ?:, -^ulL l.......... • ...jl^. .; |
,^>'- |
![]() |
![]() |
25. Акустические спектры голоса выдающихся певцов в сравне
нии со спектрами голоса неопытных певцов и со спектрами речевых
гласных (по В. Морозову). Крестиком на каждом графике обозначена
группа обертонов составляющая высокую певческую форманту.
1. М. Баттистини—гласный а, нота ми-бемоль^, в эпиталаме из оп. «Не
рон»; 2. Т. Руффо — гласный е, нота до\ в арии Риголетто нз III акта;
3. Ф. Шаляпин — гласный а, нога мщ в слове «стадами» из «Песни
убогого странника»; 4. Певец-любитель М. Э. (бас) —то же самое,
что и Ф. Шаляпин; 5. Э. Карузо — гласный а, нота си-бемоль\ из
арии Элизара: 6. Б. Джильи — гласный а, нота ahi фермата в конце
романса «Пой мне». 7. Л. Собинов — гласный е, нота рех в слове
«кипучей» из романса молодого цыгана; 8. Диктор В. Г-ов — речевой
гласный е в слове «кипучей»; 9. П. Лисициан — гласный а, нота соль\
из пролога к оп. «Паяцы»; 10. Марио дель Монако — гласный о, нота
ля-бемоль из арии Каварадосси; 11. Н. Гяуров — гласный о, нота mui
в слове «amor» из арии короля Филиппа; 12. Неопытный певец-лю-
<5итель Б. Г-р (баритон) — то же самое, что и Н. Гяуров; 13. И. Коз
ловский — гласный у, нота фа-диез в слове «забудет» нз арии Лен
ского; 14. С. Лемешев — гласный а, нота си-бемоль из русской народ
ной песни; 15. Б. Гмыря — гласный а, нота ля в слове «пал» из арии
Руслана; 16. Диктор В. Г-ов----------- речевой гласный а, в слове «пал».
гласного (начало его звучания), то трудно узнать, какой гласный звук тянется.
Гласные в пении звучат «ближе друг к другу», более «нейт-рализованно», чем в речи. Форманты гласных в пении несколь-
У 6 (240 гц.) Ф. Шаляпин |
ко изменены, так как перед артикуляционным аппаратом стоят не только задачи формирования резонаторных полостей, нужных для образования формант гласных, но и другие задачи, связанные с образованием певческого 'звука. Для этого полости рта и глотки формируются шире и рот открывается относительно больше, чем в речи.
i i
S ЮНОЙ
![]() |
У'f (350 гц) Тита Скипа
Ю
'234567
Рис. 26. Гласный а в речи и в пении: вверху спектр гласного а в речи, внизу тот же гласный а в пении у профессионального певца. Видно, что у профессионального певческого голоса прибавляются еще две области усиления (певческие форманты) одна в области около 500 гц, другая в области 3000 гц. (речевые форманты заштрихованы). |
Рис. 27. Спектры голоса Шаляпина (вверху) и Тито Скипа (внизу) на гласном звуке у. Видно, что у обоих певцов основная энергия певческого звука концентрируется в области нижней и верхней певческих формант. Основной тон у Шаляпина (над цифрой 1) в общем спектре не играет заметной роли. Основная энергия заключена в 2, 3, 4 и 10, 11 обертонах, т. е. в области 500—1000 гц (особенно область 500) и 2400—2600 гц (особенно 2600 гц) (по Mac Ginnis, С. S., Elnick, M., and Kraichman, M.).
У владеющего голосом певца все гласные звучат одинаково вокально, ровно, т. е. все в певческом тембре. У неопытного певца певческий характер голоса на одних гласных выражен!
лучше, чем на других. Одни гласные звучат хорошо, другие «заваливаются» или, наоборот, «обеляются». Такая же неровность в тембре у необученных певцов отмечается на разных участках диапазона. Центральная часть диапазона, например, звучит хорошо, а верхняя часть перекрывается, звучит глухо или, наоборот, — открыто, бело.
Все эти неровности звучания связаны с неумением формировать различные гласные и разные участки диапазона так, чтобы сохранять постоянно хорошее образование высокой и низкой певческих формант. Ровность голоса, его красивое звучание в правильно сформированном певческом тембре зависит от умения сохранять на всех гласных и на всем диапазоне высокую и низкую певческую форманты. Задача певца — научиться артикулировать гласные, пользоваться диапазоном к динамикой звука так, чтобы высокая и низкая певческие форманты всегда присутствовали в голосе в равной мере.
Для вокальной педагогики существенным является не только установление тех особенностей спектра, которые вызывают в голосе певца качества яркости и мягкости певческого тембра, т. е. певческих формант, но и механизм и место возникновения этих групп усиленных обертонов.
Как установил Бартоломью, высокая певческая форманта, являющаяся важнейшей характеристикой певческого голоса, возникает в гортани человека. Надсвязоч-ная полость гортани, образующаяся между голосовыми связками и входом в гортань, имеет размеры 2,5—3,0 см и резонирует на частоты порядка 2500—3000 гц, т. е. как раз в области высокой певческой форманты. Наши рентгенологические наблюдения показали, что эта полость у квалифицированных певцов во время пения всегда четко отграничена от полости глотки суженным входом в гортань. Размеры и форма ее, а -следовательно и резонанс, сохраняются на всех гласных и на всем диапазоне, чего в речи у тех же певцов не наблюдается. Очевидно, стабильность формы и размеров надсвязочной полости гортани создает возможность усилиться возникшим в голосовой щели высококачественным обертонам — сформироваться высокой певческой форманте.
Еще Гарсиа, более ста лет назад заглянувший впервые в гортань поющего человека посредством изобретенного им ларингоскопа, отметил, что при суженном за счет наклоненного надгортанника входе в гортань голос имеет блестящий, яркий ха-рактер, а при открытом входе в гортань, когда надгортанник поднимается, голос затуманивается, теряет яркость. Как можно теперь понять, открывающийся надгортанник меняет размеры полости гортани, она становится больше и свободно смотрит в глотку широко открытым входом. Резонанс ее меняется, и в ней начинают усиливаться обертоны других частот, не соответствующих области высокой певческой форманты. Таким обра-
зом, есть все основания полагать, что высокая певческая форманта образуется в надсвязочной полости гортани за счет резонанса обертонов, рожденных в голосовой щели.
Как мы уже отмечали, источником звука певческого голоса является воздушная струя, прерываемая голосовыми связками,, и первичный спектр звука содержит большое количество обертонов, в том числе и обертоны высокоформантной области. Мы уже писали, что характер исходного тембра являете» существенным фактором темброобразования голоса в целом. При жесткой атаке, когда фаза смыкания голосовых связок акцентирована, возникающий звук имеет яркий, даже резкий, жесткий характер, так как в нем содержится много высокочастотных обертонов. Если атака вялая, смыкание связок неплотное, высокочастотных обертонов образуется мало, то и звук носит «рассыпанный», «несобранный», мягкий характер.
Следовательно, характер смыкания голосовой щели играет решающую роль в образовании первичного спектра гортани, а значит и звучания голоса в целом.
Исследования Е. А. Рудакова показали, что высокочастотные обертоны порядка 3000 гц возникают в голосе только в фазе смыкания связок и отсутствуют в фазе раскрытия голосовой щели. Эти исследования показывают, что в возникновении высоких обертонов основную роль играет характер смыкания голосовой щели во время певческой фонации. Е. А. Рудаков считает, что высокие обертоны образуются за счет краевой работы связок в фазе смыкания как свистковые тоны. Однако» возникновение высокой певческой форманты в голосовой щел» как краевого тона связок не противоречит возможности ее резонанса в надсвязочной полости гортани и тем самым накопления ее энергии для дальнейшего выведения по ротоглоточ-ному рупору в наружное пространство.
Место возникновения низкой певческой форманты указывается предположительно. Некоторые считают местом усиления этой группы обертонов нижнюю часть глотки, что совпадает с практическими приемами педагогов, которые, желая получить более округлый, мясистый звук, требуют хорошего зевка, открытия нижней части глотки. Другие думают, что местом возникновения низкой певческой форманты является резонанс трахеальной трубки. При этом ясно ощущаются вибрации в грудной клетке, передающиеся ей от резонирующей трахеи через легочную ткань.
Резюмируя сказанное о тембре певческого голоса, надо сказать, что первичный тембр, возникающий в голосовой щели„ видоизменяется за счет резонанса четырех основных полостей: трахеи, гортани, глотки и рта. В трахее и гортани оформляются певческие форманты, а в глотке и во рту—форманты гласных. Певческие форманты постоянно присутствуют в голосе квалифицированного певца, потому и полости, их рождающие
•(полость гортани и трахеи), у него постоянны в своем объеме. Этим объясняется то, что позиция гортани у мастера вокала строго фиксирована. Форманты гласных, образующиеся в полостях глотки и рта, требуют разных резонаторных объемов, поэтому язык при артикуляции гласных обязательно перемещается из одной позиции в другую.
Роль носового резонатора
На формирование тембра голоса может оказать существенное влияние н о с о в а я и носоглоточная во л о сти. Когда в пении мягкое нёбо (нёбная занавеска) опускается, звук, идущий по ротоглоточному каналу, начинает широко сообщаться с носоглоточной полостью и носом. При этом он, как известно, приобретает гнусавый оттенок. Широкий проход в носоглотку создает добавочный канал, по которому звук проходит в нос. С акустической точки зрения, этот канал является своего рода фильтром-ловушкой, в котором поглощаются обертоны порядка около 2000 гц. Звук, из тембра которого удалены эти обертоны, и воспринимается нами как звук носового характера. Гнусавый, носовой оттенок голоса является порочным призвуком тембра, и певцы стремятся его избегать. Хорошим поднятием мягкого неба они перекрывают этот проход. Как показывают рентгенологические наблюдения, у квалифицированного певца как правило происходит поднятие мягкого нёба во время пения.
Вибрато
Мы упоминали, что тембр певческого голоса зависит не только от спектрального состава звука, но и от вибрато. Вибрато делает голос теплым, живым, выразительным. Оно воспринимается нашим слухом как составная часть тембра звука. Вибрато было изучено акустиками," так же как и другие качества голоса. Как оказалось, звук имеет для нашего слуха красивый, льющийся характер тогда, когда вибрация совершается со скоростью 6—7 раз в секунду. Если эти пульсации совершаются реже или чаще, то голос делается менее приятным на слух, таким образом, только определенная частота вибрато делает голос приятным.
Явление вибрато сложно. Как показали исследования, вибрации в звуке певческого голоса зависят от периодического изменения всех характеристик звука: высоты, силы и тембра. При вибрато певческого звука с этой же частотой пульсирует и высота, и сила, и тембр. Если граммофонную пластинку какого-либо певца, записанную со скоростью 78 оборотов, прослушать
на скорости 33 оборота или магнитофонную запись певческого голоса прослушать со скоростью вдвое меньшей, ^чем та, на которую она была записана (эксперимент, доступный каждому), то легко уловить вибрато в замедленном виде. Голос будет зву-
: /^^ziawizywH^^
тон. В процессе этих смещений по высоте на полутон возникает и вибрато силы, т. е. такая же пульсация интенсивности звука.
Тембровое вибрато можно себе представить как изменение характера звука на одной и той же ноте, например от а к о или от более светлого к более темному, так что если в приведенном выше примере вообразить, что вместе с повышением и усилением звука в цикле вибрато меняется и его характер, го сущность тембрового вибрато легко уяснить.
У разных певцов варьируют в разных соотношениях все три вида вибрато. У одних вибрато высоты превалирует, а вибрато силы и тембра выражено меньше, а у других наоборот. Если вспомнить, что варьирует и частота вибрато, то легко представить себе то огромное разнообразие, которое вибрато может придавать тембрам певческого голоса. Достаточно вспомнить голоса многих выдающихся артистов, чтобы понять, что красота голоса может сочетаться с весьма различным качеством вибрато.
Детали физиологии вибрато не могут еще считаться достаточно хорошо выясненными, но ясно, что оно возникает за счет колебаний гортани, подвешенной в мышцах шеи. О физиологии вибрато и о практической работе над ним мы скажем в четвертой главе.
Мы разобрали три характеристики сложного звука певческого голоса: частоту колебаний, амплитуду их и спектр, которые мы соответственно воспринимаем как высоту звука, его силу и тембр.
Теперь коснемся вопроса перехода звука от колеблющегося тела в пространство и восприятия звука нашим слухом.
Рис. 28. Вибрато голоса мастеров пения и неопытных певцов, записанное при помощи самописца уровней электроакустических колебаний (по В. Морозову). 1. А. Патти — колоратурные украшения в арии Нормы. Обращает на себя внимание строгая ритмичность и плавность («округлость») вибрато. 2. Т. Руффо — фраза из арии Риголетто.
3. Б. Джильи — заключительная фраза из романса Куртиса «Пой мне».
4. Н. Обухова — фраза из арии Далилы. 5. И. Козловский — заключи
тельная фраза из песенки Герцога. 6. С. Лемешев—фраза из песни
«Когда я на почте служил ямщиком». 7. Неопытный певец — фраза
из «Песни певца за сценой» (из оперы «Рафаэль»), хорошо вндна не
ритмичность кривой вибрато и ее ломаный характер. 8. Слабо выра
женное вибрато в голосе 'певца — мальчика 13 лет.
чать на октаву ниже, его тембр изменится, так как весь обер-тоновый состав сместится на октаву вниз и ясно будет ощущаться вибрато высоты, имеющее большой размах. Как оказалось, голос в процессе вибрато обычно изменяется по высоте на '/2 тона, иногда и более, т. е. он вибрирует вокруг средней частоты, которую мы и воспринимаем как основной
Излучение звука
Переход энергии колеблющегося тела в звуковые колебания воздушной среды носит название излучения звука. В отношении излучения в акустике установлено правило: излучение тем лучше, чем больше площадь излучающей поверхности. Наоборот, при малых площадях излучение невелико. Всем известен простой опыт с камертоном, который в руке звучит слабо, но, будучи прислонен к какому-либо упругому предмету — столу, двери, шкафу и т. п., начинает звучать значительно сильнее. Само собой понятно, что сила от этих предметов к камертону не прибывает, что единственным источником энергии звучания являются ножки камертона, которые приведены в колебание ударом этого камертона или сжатием его ножек пальцами.
Почему же, будучи прислонен к большим поверхностям, камертон звучит громче, чем в руке, хотя источник энергии — все те колебания ножек камертона? Все дело здесь в усло-
виях излучения звука. Когда колеблются ножки камертона, площадь их соприкосновения с воздушной средой весьма невелика, энергия, заключенная в ножках, плохо передается воздуху и тратится на бесполезную перекачку воздуха вокруг ножек. Ножки «режут» воздух и не создают хорошей волны. Рука, держащая камертон, будучи мягкой, не помогает излучению. Когда камертон прислонен к столу или к другой большой твердой поверхности, его колебания передаются всей поверхности и от нее — большой площади воздуха. Поэтому звук камертона, поставленного на стол, всегда сильнее.
Аналогичное явление происходит и со струной, которая имеет малую площадь соприкосновения с воздухом и потому нуждается в деках, чтобы ее звук был хорошо слышим. В струнных инструментах излучают не столько струны, сколько деки. Для наглядности можно привести такой пример: спицей нельзя создать сильных волн в тазе с водой, — она будет «резать» воду и давать малые волны, с какой бы силой мы ею ни двигали. Для того чтобы получить сильные волны, надо двигать предметом, имеющим большую площадь.
Как показывают опыты, выходным отверстием для звука, рожденного гортанью (излучателем голоса), в пении является только ротовое отверстие. Разумеется, мы говорим здесь о гласных, на которых, собственно, и осуществляется пение. Лицевые части скелета и грудная клетка, хотя они и дрожат во время пения, излучают лишь ничтожную энергию, не играющую какой-либо роли в общем звучании голоса поющего человека.
Голосовой тракт человека представляет собою своеобразный рупор: над источником колебаний — связками расположена трубка, открытая в наружную среду. По этой трубке-рупору звук, рожденный в голосовой щели, достигает ротового отверстия и отсюда уже распространяется в наружное пространство. В рупоре его широкая часть — раструб — оканчивается устьем — выходным отверстием, откуда уже начинается свободное воздушное пространство. Ротовое отверстие в голосовом тракте человека играет роль устья рупора, и потому к нему приложимы те же закономерности, которые установлены для рупора. В рупорах излучателем энергии является его устье. Чем больше площадь устья рупора,, тем лучше излучение энергии рупора в наружное пространство.
С этой точки зрения, чем больше открыт рот во время фонации, тем лучше энергия переходит в наружное пространстве Действительно, когда человек говорит или кричит, он естественно использует эту закономерность. При негромкой бытовой речи рот раскрыт немного. При повышенной громкости — рот раскрывается больше. При крике он раскрыт максимально, а при желании быть слышимым на более далекое расстояние человек увеличивает раструб и устье рупора за счет рук, сложенных в виде рупора и приставленных ко рту. Все эти обыч-
ные, широкоизвестные в быту приспособления голосового аппарата к разным условиям фонации объясняются стремлением найти способ увеличить излучение звука в наружное пространство. При желании громко крикнуть человек увеличивает и исходную силу звука, которая родится в голосовой щели, и улучшает его излучение в наружное пространство. Однако при пении далеко не у всех певцов можно наблюдать подобные приспособления. Если вообще в пении рот открывается больше, чем в речи, то максимальная или очень большая степень открытия рта (подобная раскрытию при крике) почти не встречается. Некоторые певцы все звукообразование ведут при очень умеренно открытом рте, что, разумеется, не является случайным.
Конечно, не следует думать, что для певческого звука законы другие, чем для речевого. Просто в пении для певца встают на первое место другие задачи — задачи образования красивого певческого тембра и естественного формирования слова, чему далеко не всегда способствует излишне широкое открытие рта. При правильном формировании певческого тембра, когда хорошо образуется высокая певческая форманта, голос имеет достаточную громкость (он обладает качеством полетности) и при умеренном открытии рта. Наоборот, максимальное открытие рта может сместить гортань, неблагоприятно повлиять на работу голосовой щели и помешать образованию правильного певческого тембра. Кроме того, излишнее раскрытие рта может помешать естественному произнесению слов, что является обязательным условием художественного пения.
Перед певцом всегда стоит задача быть хорошо слышимым в больших помещениях концертных залов или сцены. Идеальным является положение, когда голос и красив и мощен в одно и то же время. Однако не сила голоса, а его красота и ясная дикция являются определяющими факторами в профессиональной деятельности. Поэтому, заботясь о хорошем открытии рта, надо делать это не в ущерб естественности слова и красоте тембра.
Голосовой аппарат — своеобразный рупор
Сходство голосового аппарата с рупором имеет не только внешний характер. К голосовому аппарату применимы те же закономерности, которым следует звук в рупорах.
Прежде всего систему полостей надставной трубки от голосовых связок до ротового отверстия следует рассматривать как своеобразный изогнутый волновод, по которому звуковые волны распространяются от источника звука до выхода в наружное пространство. Конфигурация этого волновода в известной мере меняется при переходе от одного гласного
звука к другому в связи с перекладом языка и изменением степени открытия рта.
Представим себе две разные формы рупора: расходящийся и открывающийся в наружное пространство широким отверстием (см. рис. 29 справа) и сходящийся (см. рис. 29 слева), т. е. сначала широкий, а затем суженный, с малым отверстием,
сообщающимся с внешней средой. Как показывают наблюдения, во втором случае звук гасится в значительно большей степени, чем в первом. Кроме того, малое сообщающее отверстие ухудшает переход звуковой энергии в наружное пространство— излучение звука.