Бескорпусная защита ИМС, смонтированных
На полиимидных носителях
Современная технология изготовления ИМС предусматривает обычно защиту поверхности полупроводникового кристалла тонкими неорганическими пленками Si02, Si3N4, A1203, легкоплавких стекол, основное назначение которых заключается в стабилизации состояния поверхности. В ряде случаев они не являются достаточно надежной защитой от воздействия окружающей среды (паров воды, агрессивных газов), внешних загрязнений, механических воздействий, не способны обеспечить укрепление конструкции и электрических выводов ИМС.
Для бескорпусных ИМС период от сборки и монтажа ИМС до установки их в блок МЭА и герметизации в составе блока довольно продолжителен. При эксплуатации в герметичном объеме блока МЭА ИМС испытывают воздействие знакопеременных температур, механических ускорений и вибрации, подвергаются влиянию паров воды, других компонентов парогазовой среды и т.д. Поэтому, помимо защиты тонкими пленками неорганических материалов, для бескорпусных ИМС применяют защиту органическими полимерными материалами, к которым предъявляется целый комплекс требований по физико-механическим и электрофизическим свойствам.
Защитные полимерные материалы должны обладать следующими свойствами:
• иметь высокую адгезию к материалам конструкции, достаточно высокую прочность, малые внутренние напряжения для надежного укрепления конструкции и электрических выводов бескорпусных ИМС;
• иметь минимальную усадку при отверждении, сохранять в диапазоне рабочих температур достаточную эластичность, иметь близкие с материалом конструкции значения ТКР;
• иметь высокое удельное объемное электрическое сопротивление, минимальную поляризуемость, чтобы не влиять на перераспределение зарядов в подзатворном диэлектрике;
• быть коррозионно пассивными по отношению к металлам и сплавам электрических межсоединений и выводов ИМС, иметь минимальное количество ионогенных примесей, которые могут интенсифицировать процессы коррозии, привести к термополевой нестабильности параметров ИМС и другим отрицательным последствиям;
• быть гидрофобными, обеспечивать стабильность поверхностного состояния полупроводника и электрических параметров ИМС в условиях повышенной влажности и необходимое время влагозащиты;
• быть термо- и радиационно устойчивыми, иметь незначительное газовыделение при повышенных температурах;
• легко наноситься на поверхности изделия и отверждаться за сравнительно короткий срок.
Потеря работоспособности ИМС в бескорпусном исполнении, защищенных органическими полимерными материалами или герметизированных в монолитные корпуса, вызывается поглощением герметизирующим полимерным материалом влаги и увлажнением поверхности ИМС. Отказ ИМС наступает при достижении критической концентрации, соответствующей критическому давлению паров воды. Время, в течение которого на поверхности ИМС достигается критическая концентрация влаги, определяют из выражения
(1)
,
где Ркр - критическое давление паров воды, приводящее к отказу; Р0 -парциальное давление паров воды окружающей среды; d - толщина герметизирующей оболочки; D - коэффициент диффузии молекул воды в герметизирующей оболочке, м /с.
Как видно из (1), т определяется толщиной герметизирующего материала d, коэффициентом диффузии воды D в нем и отношением Ркр /Ро. Формула (1) предполагает, что с поверхностью ИМС полимер имеет слабую адгезию. Значения D для различных герметизирующих материалов приведены в табл. 6.
Таблица 6