Производная и дифференциал
Определение. Пусть функция
определена в некоторой окрестности точки
. Приращением этой функции в точке
называется функция аргумента
Производной функции
в точке
называется
. Производная функции в точке
обозначается
или
. Операция нахождения производной называется дифференцированием.
Таблица производных простейших элементарных функций
1.
8. 
2.
9. 
3.
10. 
4.
11. 
5.
12. 
6.
13. 
7. 
Физический смысл производной
Производная
- скорость изменения зависимой переменной
по отношению к изменению независимой переменной
в точке
. В частности, если
- время,
- координата точки, движущейся по прямой, то
- мгновенная скорость точки в момент
.
Геометрический смысл производной
Рассмотрим график функции
.
y
N
l
M

x
MN - секущая к графику функции. При
, угол
стремится к некоторому пределу
, а секущая, поворачиваясь вокруг точки M, становится касательной.

Уравнение касательной к графику функции:
.
Уравнение нормали, проведённой в той же точке:
.
Правила дифференцирования
Если
и
- дифференцируемые функции, то справедливы равенства

;
Производная сложной функции
Если функция
имеет в точке
производную
, а функция
имеет в точке
производную
, то сложная функция
имеет производную в точке
, причём
. (1)
Физическая интерпретация формулы (1): производная
- скорость изменения
по отношению к
, производная
- скорость изменения
по отношению к
. Очевидно, что скорость
равна произведению скоростей
и
. (Если
движется быстрее
в
раз,
- быстрее
в
раз, то
движется быстрее
в
раз).
Производная функции, заданной параметрически
Пусть функции
(2)
определены на некотором промежутке изменения переменной
, которую назовём параметром. Пусть функция
является строго монотонной на этом промежутке. Тогда существует обратная функция
, подставляя которую в уравнение
получим
. Таким образом, переменная
является сложной функцией переменной
. Задание функции
с помощью уравнений (2) называется параметрическим. Если функции
имеют производные, причём
, то
.
Дифференциалом функции
в точке
называется функция аргумента
. Дифференциалом независимой переменной
называется приращение этой переменной:
. Таким образом, дифференциал функции
в точке
имеет вид
, (3)
откуда
.
Геометрический и физический смысл дифференциала
y
N
P
dy
M

0
x
Рассмотрим график функции
. МР- касательная к графику функции в точке М
. Дифференциал
равен приращению ординаты касательной.
Если
- время,
- координата точки на прямой в момент
, то дифференциал
равен тому изменению координаты, которое получила бы точка за время
, если бы скорость точки на отрезке
была постоянной и равной
. Изменение скорости на этом отрезке приводит к тому, что
. Однако на малых промежутках времени
изменение скорости незначительно и
.
Инвариантность формы первого дифференциала
Пусть аргумент
функции
является функцией от
, тогда дифференциал функции
по-прежнему имеет вид (3), но теперь
является не произвольным приращением аргумента
, а дифференциалом функции
, т.е.
. Это свойство – сохранение формы и в том случае, когда
называется инвариантностью формы первого дифференциала.
Применение дифференциала в приближённых вычислениях
Так как
при малых
, т.е.
, то
.
Эта формула позволяет находить приближённые значения
при малых
, если известны
. При этом погрешность при такой замене при
является бесконечно малой, более высокого порядка, чем
.
Производные высших порядков
Если производная
функции
определена в некоторой окрестности точки
и имеет в этой точке производную, то эта производная от
называется второй производной и обозначается
. Третья производная является производной от
и т.д. Таким образом, производные высших порядков определяются индуктивно по формуле
.
Основные формулы вычисления n-х производных
1. 
2. Формула Лейбница
, где 
3. 
4. 
5. Если
, то
, или 
Общая схема исследования функции
и построения её графика
I. Элементарное исследование.
1. Найти область определения функции.
2. Исследовать функцию на чётность/нечётность, периодичность.
3. Вычислить предельные значения функции в граничных точках области определения.
4. Выяснить существование асимптот.
5. Определить, если это не вызовет особых затруднений, точки пересечения графика функции с координатными осями.
6. Сделать эскиз графика функции, используя полученные результаты.
II. Исследование графика функции по первой производной.
1. Найти решения уравнений
и выяснить, в каких точках производная не существует.
2. Точки, «подозрительные» на экстремум, исследовать с помощью достаточного условия, определить вид экстремума.
3. Найти интервалы монотонности.
III. Исследование графика функции по второй производной.
1. Найти решения уравнения
и выяснить, в каких точках производная не существует.
2. Точки, «подозрительные» на перегиб, исследовать с помощью достаточного условия.
3. Вычислить значения функции в точках перегиба.
4. Найти интервалы выпуклости и вогнутости.
IV. Построить график функции.
Если в некоторой окрестности точки
выполняется неравенство
или
, то точка
называется точкой экстремума функции
(соответственно точкой максимума или минимума).
Необходимое условие экстремума: если
- точка экстремума, то
.
Достаточное условие экстремума: точка
является точкой экстремума, если её производная
меняет знак при переходе через точку
, с + на – при максимуме, с – на + при минимуме.
Точка
называется точкой перегиба кривой
, если при переходе через точку
меняется направление выпуклости.
Необходимое условие точки перегиба: если
- точка перегиба, то
.
Достаточное условие точки перегиба:
является точкой перегиба кривой
, если при переходе через точку
вторая производная меняет знак.
Прямая
называется наклонной асимптотой кривой
, если расстояние от точек кривой до асимптоты стремится к нулю при
.
При этом
.
При
имеем горизонтальную асимптоту
.
Если
или
, то прямая
называется вертикальной асимптотой.
Примеры
1. Пользуясь формулами дифференцирования, найти производные следующих функций:
1)
2) 
3)
4) 
Решение:
1)
есть сложная функция.
, где 
Производная сложной функции имеет вид
или
,
следовательно,

2)
- сложная функция.
, где
, а
,
;
3) применяя логарифмическое дифференцирование, последовательно находим


= 
4)
есть неявная функция, т.е. задана уравнением
, не разрешенным относительно у. Для нахождения производной
нужно продифференцировать по х обе части равенства, помня, что у есть функция от х, и затем разрешить полученное равенство относительно искомой производной. Как правило, она будет зависеть от х и у:


2. Найти производную первого и второго порядка
и
для параметрически заданной функции
.
Функция у от независимой переменной х задана через посредство вспомогательной переменной (параметра t). Производная от у по х определяется формулой
.
Находим производные от у и х по параметру t:



Находим производную второго порядка от y по х:
, или
.
Находим
;
.
3. Составить уравнение касательной и нормали к кривой у = х2 - 4х в точке, где х = 1.
Решение. Уравнение касательной к кривой в точке М(х0, у0)

х0 = 1,

Для определения углового коэффициента касательной
находим производную

Подставляя значения х0, у0, у'(х0) в уравнение, получим
у+3 = -2(х-1) или 2х+у+1 = 0
Уравнение нормали -

или
.
4. Найти дифференциалы функций:
1)
2) 
вычислить
.
Решение. Находим производную данной функции и, умножив ее на дифференциал независимой переменной, получим искомый дифференциал данной функции:
1) 
2)
.
Полагая х = 0 и dx = 0,1, получим 
5. Вычислить приближенное значение:
1)
2)
.
Решение. Если требуется вычислить
и если проще вычислить f(x0) и
, то при достаточно малой по абсолютному значению разности
можно заменить приращение функции ее дифференциалом
и тогда приближенное значение искомой величины вычисляется по формуле

1) Будем рассматривать
как частное значение функции
при x1=17. Пусть х0 =16, тогда


Подставляя в формулу, получим

2) y= arctgx, x1=0,98, x0 = 1, dx=0,98-1=-0,02;

Получим
.
6. Исследовать и построить график функции
.
Решение:
1) заданная функция определена и непрерывна на всей числовой оси
;
2) функция нечетная, ибо у(-х) = -у(х), ее график будет симметричен относительно начала координат. Поэтому достаточно построить график для
;
3) график функции пересекается с осями координат только в начале координат, так как у(0) = 0;
4) исследуем функцию на наличие асимптот:
а) вертикальных асимптот график функции не имеет;
б) невертикальная асимптота имеет уравнение у = kх + b.

= 
0.
Таким образом, уравнение асимптоты - у = 0;
5) исследуем функцию на экстремум:
;
у' нигде не обращается в нуль; у не существует в точках х = ±1, которые являются критическими.
Исследуем знак производной на интервале [0;)
0 1
х = 1 есть точка максимума,
;
6) исследуем график функций на выпуклость и вогнутость:

в точке х = 0; у" не существует в точках х = ±1. Эти точки могут быть абциссами точек перегиба.
Исследуем знак второй производной на интервале [0;)
0 1 x
х = 1 не является точкой перегиба.
Основываясь на полученных результатах исследования, строим график функции на интервале [0;), затем симметрично полученному графику относительно начала координат на интервале (- ; 0)
Правило Лопиталя
Теорема. Пусть
и
дифференцируемы в некоторой окрестности точки а (за исключением, может быть, её самой), причём
. Тогда если
или
, то
при условии, что предел правой части данного равенства существует.
Примеры
1. Найти пределы
1)
2) 
3) 
Решение. Убедившись, что имеет место неопределенность
или
, применяем правило Лопиталя:
1) 
2) 
(здесь правило Лопиталя применено дважды);
3)
= 
= 