Секретные ключи никогда не должны записываться в явном виде на носителе, который может быть считан или скопирован.
В достаточно сложной ИС один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необходимость организации мини-баз данных по ключевой информации. Такие базы данных отвечают за принятие, хранение, учет и удаление используемых ключей.
Итак, каждая информация об используемых ключах должна храниться в зашифрованном виде. Ключи, зашифровывающие ключевую информацию называютсямастер-ключами. Желательно, чтобы мастер ключи каждый пользователь знал наизусть, и не хранил их вообще на каких-либо материальных носителях.
Очень важным условием безопасности информации является периодическое обновление ключевой информации в ИС. При этом переназначаться должны как обычные ключи, так и мастер-ключи. В особо ответственных ИС обновление ключевой информации желательно делать ежедневно.
Вопрос обновления ключевой информации связан и с третьим элементом управления ключами - распределением ключей.
· Распределение ключей
Распределение ключей - самый ответственный процесс в управлении ключами. К нему предъявляются два требования:
Оперативность и точность распределения
Скрытность распределяемых ключей.
В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в ИС требует новых эффективных решений.
Распределение ключей между пользователями реализуются двумя разными подходами:
1. Путем создания одного ли нескольких центров распределения ключей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены и это позволяет читать все сообщения, циркулирующие в ИС. Возможные злоупотребления существенно влияют на защиту.
2. Прямой обмен ключами между пользователями информационной системы. В этом случае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов.
В обоих случаях должна быть гарантирована подлинность сеанса связи. Это можно обеспечить двумя способами:
1. Механизм запроса-ответа, который состоит в следующем. Если пользователь А желает быть уверенным, что сообщения который он получает от В, не являются ложными, он включает в посылаемое для В сообщение непредсказуемый элемент (запрос). При ответе пользователь В должен выполнить некоторую операцию над этим элементом (например, добавить 1). Это невозможно осуществить заранее, так как не известно, какое случайное число придет в запросе. После получения ответа с результатами действий пользователь А может быть уверен, что сеанс является подлинным. Недостатком этого метода является возможность установления хотя и сложной закономерности между запросом и ответом.
2. Механизм отметки времени («временной штемпель»). Он подразумевает фиксацию времени для каждого сообщения. В этом случае каждый пользователь ИС может знать, насколько «старым» является пришедшее сообщение.
В обоих случаях следует использовать шифрование, чтобы быть уверенным, что ответ послан не злоумышленником и штемпель отметки времени не изменен.
При использовании отметок времени встает проблема допустимого временного интервала задержки для подтверждения подлинности сеанса. Ведь сообщение с «временным штемпелем» в принципе не может быть передано мгновенно. Кроме этого компьютерные часы получателя и отправителя не могут быть абсолютно синхронизированы. Какое запаздывание «штемпеля» считать подозрительным.
Поэтому в реальных ИС, например в системах оплаты кредитных карточек используется именно второй механизм установления подлинности и защиты от подделок. Используемый интервал составляет от одной до нескольких минут. Большое число известных способов кражи электронных денег, основано на «вклинивании» в этот промежуток с подложными запросами на снятии денег.
Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA.