Протон движется со скоростью 0,9×c. Найти импульс и кинетическую энергию протона.
Контрольная работа № 1
- Поезд, двигаясь равнозамедленно, в течение времени t=1 мин уменьшает свою скорость от u1=40 км/ч до u2=28 км/ч. Найти ускорение поезда и расстояние, пройденное им за время торможения.
- Радиус-вектор материальной точки изменяется со временем по закону . Определить: 1) скорость ; 2) ускорение ; 3) модуль скорости в момент времени t=2 с.
- Частица движется вдоль прямой по закону , где А=3 м, В=2,5 м/с, С=0,25 м/с3. Найти средние значения скорости и ускорения за интервал времени от t1=1 с до t2=6 с.
- Точка движется по окружности радиусом R=2 см согласно уравнению S=Ct3, где С=0,1 см/с3. Найти тангенциальное, нормальное и полное ускорение точки в момент времени, когда линейная скорость точки u=0,3 м/с.
- Тело брошено со скоростью u0=10 м/с под углом a=45° к горизонту. Найти радиус кривизны траектории тела через t=1 с после начала движения.
- Тело движется с ускорением, изменяющимся по закону a=10t-10. Определить ускорение тела через 3 с после начала движения и скорость в конце третьей секунды, если v0=0.
- Тело движется с ускорением, изменяющимся по закону a=10t-10. Определить ускорение тела через 5 с после начала движения и путь, пройденный телом за это время, если v0=0.
- Камень брошен горизонтально со скоростью u0=10 м/с. Определить угол, который составит с вертикалью вектор скорости камня через t=2 с после начала движения, а также тангенциальное и нормальное ускорения камня в этот момент.
- Из вертолета, поднимающегося вверх с ускорением а=1 м/с2, на высоте h=450 м выпал предмет. Определить скорость и время падения предмета.
- Автомобиль начинает движение и, двигаясь равноускоренно, проезжает путь S1=50 м за время t1=10 с. Сколько времени от начала движения затратит автомобиль, чтобы пройти путь S2=450 м?
- Колесо радиусом R=0,5 м вращается согласно уравнению j=A×t+B×t3, где A=2 рад/с, B=0,2 рад/с3. Определить линейную скорость и полное ускорение точки, находящейся на ободе колеса в момент времени t=3 с.
- Вал вращается с частотой 180 об/мин. С некоторого момента вал начал вращаться равнозамедленно с угловым ускорением 3 рад/c2. Через какое время вал остановится? Сколько он сделает оборотов до остановки?
- Точка движется по окружности радиусом 20 см с постоянным тангенциальным ускорением. Найти тангенциальное ускорение точки, если известно, что к концу пятого оборота после начала движения линейная скорость точки 79,2 см/с.
- Колесо, вращаясь равнозамедленно, за время t=1 мин уменьшило свою частоту с n1=300 об/мин до n2=180 об/мин. Найти угловое ускорение e колеса и число оборотов N колеса за это время.
- Твердое тело вращается вокруг неподвижной оси по закону j=a×t-b×t3, где a=6 рад/с, b=2 рад/с3. Найти средние значения угловой скорости и углового ускорения за промежуток времени от t=0 до остановки.
- Найти радиус вращающегося колеса, если известно, что линейная скорость u1 точки, лежащей на ободе, в 2,5 раза больше линейной скорости u2 точки, лежащей на расстоянии r=5 см ближе к оси колеса.
- Колесо, вращаясь равноускоренно, через время 1 мин после начала вращения приобретает частоту 720 об/мин. Найти угловое ускорение колеса и число оборотов колеса за это время.
- Уравнение вращения твердого тела имеет вид j=3×t2+t. Определить частоту вращения, угловую скорость и угловое ускорение твердого тела через 10 с после начала вращения.
- Уравнение вращения диска радиусом R=1 м имеет вид j=3-t+0,1×t3. Определить тангенциальное, нормальное и полное ускорения точек на ободе диска для момента времени t=10 с.
- Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением j=A×t2 (A=0,1 рад/с2). Определить полное ускорение точки на ободе диска к концу второй секунды после начала движения, если линейная скорость этой точки в этот момент u=0,4 м/с.
- Тело брошено вертикально вверх со скоростью 20 м/с. Пренебрегая сопротивлением воздуха, определить, на какой высоте кинетическая энергия тела будет равна его потенциальной энергии.
- Два шара массами m1=9 кг и m2=12 кг подвешены на нитях длиной 1,5 м. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол a=30° и отпустили. Считая удар неупругим, определить высоту, на которую поднимутся оба шара после удара.
- Шарик массой m=0,1 кг, падая с некоторой высоты, ударяется о наклонную плоскость и упруго отскакивает от нее без потери скорости. Угол наклона плоскости к горизонту a=30°. За время удара плоскость получает импульс силы FDt=1,73 Н×с. Какое время пройдет от момента удара шарика о плоскость до момента, когда он будет находиться в наивысшей точке траектории.
- Тело скользит по наклонной плоскости, составляющей с горизонтом угол a=45°. Пройдя путь S=36,4 см, тело приобретает скорость u=2 м/с. Найти коэффициент трения тела о плоскость.
- Конькобежец массой 70 кг, стоя на льду на коньках, бросает в горизонтальном направлении камень массой 3 кг со скоростью 8 м/с. На какое расстояние откатится при этом конькобежец, если коэффициент трения коньков об лед 0,02?
- Гиря, положенная на верхний конец спиральной пружины, в состоянии равновесия сжимает ее на 10 мм. На сколько сожмет пружину эта же гиря, упавшая на конец пружины с высоты 5 см?
- Тело массой m=70 кг движется под действием постоянной силы F=63 Н. Определить на каком пути скорость тела возрастает в 3 раза по сравнению с моментом времени, когда скорость тела была равна u0=1,5 м/с.
- Брусок массой m2=5 кг может свободно скользить по горизонтальной поверхности без трения. На нем находится другой брусок массой m1=1 кг. Коэффициент трения соприкасающихся поверхностей брусков m=0,3. Определить минимальное значение силы, приложенной к нижнему бруску, при которой начнется соскальзывание верхнего бруска.
- Молот массой m1=5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса наковальни равна m2=100 кг. Массой куска железа пренебречь. Удар неупругий. Определить к.п.д. удара молота при данных условиях.
- С башни высотой h=25 м горизонтально брошен камень массой m=0,2 кг со скоростью u0=15 м/с. Найти кинетическую, потенциальную и полную энергии камня через время t=1 с после начала движения.
- Платформа в виде диска радиусом R=1 м вращается по инерции вокруг вертикальной оси с частотой n1=6 мин-1. На краю платформы стоит человек, масса которого равна m=80 кг. С какой частотой n2 будет вращаться платформа, если человек перейдет в ее центр? Момент инерции платформы J=120 кг×м2. Момент инерции человека рассчитывать как для материальной точки.
- Полый цилиндр массой 2 кг катится по горизонтальной поверхности со скоростью 20 м/с. Определить силу, которую необходимо приложить к цилиндру, чтобы остановить его на пути 1,6 м.
- Каток в виде однородного цилиндра массой m=2 кг катится по горизонтальной поверхности под действием силы F=10 Н, приложенной к его оси. Полагая, что сила F направлена перпендикулярно оси катка и образует с горизонтом угол a=30°, определить ускорение a, с которым перемещается ось катка.
- Полый тонкостенный цилиндр массой m=0,5 кг, катящийся без скольжения, ударяется о стенку и откатывается от нее. Скорость цилиндра до удара u1=1,4 м/с, после удара u2=1 м/с.Определить выделевшееся при ударе количество теплоты Q.
- На однородный сплошной цилиндрический вал радиусом R=50 см намотана легкая нить, к концу которой прикреплен груз массой m=6,4 кг. Груз, разматывая нить опускается с ускорением a=2 м/с2. Определить: 1) момент инерции вала; 2) массу вала.
- Стержень массой 2 кг и длиной 1м может вращаться вокруг оси, проходящей через его середину перпендикулярно стержню. В конец стержня попадает пуля массой 10 г, летящая перпендикулярно оси и стержню со скоростью 500 м/с. Определить угловую скорость, с которой начнет вращаться стержень, если пуля застрянет в нем.
- Шар массой m=10 кг и радиусом R=20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид j=A+Bt2+Ct3, где B=4 рад/с2, C=-1 рад/с3. Найти: 1) момент сил, действующий на шар через время t=2 с после началч вращения; 2) момент импульса шара относительно указанной оси через время t=3 с после начала вращения.
- Карандаш длиной 15 см, поставленный вертикально, падает на стол. Какую угловую скорость и линейную скорость будет иметь в конце падения: 1) середина карандаша; 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
- К ободу колеса массой m=50 кг, имеющего форму диска радиусом R=0,5 м, приложена касательная сила F=98,1 Н. Найти угловое ускорение колеса. Через какое время после начала действия силы колесо будет иметь скорость соответствующую частоте вращения n=100 об/с?
- Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и m2=110 г. С каким ускорением будут двигаться грузики, если масса блока равна m=400 г? Трение при вращении блока ничтожно мало.
- Материальная точка совершает колебание согласно уравнению x=Asinwt. В какой-то момент времени смещение точки x1=15 см. При возрастании фазы колебаний в 2 раза смещение x2=24 см. Определить амплитуду А колебаний.
- Материальная точка имеет наибольшее смещение 0,25 м и максимальную скорость 0,5 м/с. Написать уравнение гармонического колебания и определить максимальное ускорение точки.
- К пружине жесткостью 8 кН/м подвешен груз массой m=1 кг, который колеблется с амплитудой 1,5 см. Определить: 1) период колебаний груза; 2) максимальную скорость колебаний груза; 3) максимальную кинетическую энергию груза.
- Колебания материальной точки массой m=0,1 г происходит согласно уравнению x=Acoswt, где A=5 см, w=20 с-1. Определить максимальное значение возвращающей силы и полную энергию колебаний.
- Однородный диск радиусом 20 см колеблется около горизонтальной оси, проходящей на расстоянии 15 см от центра диска. Определить период колебаний диска относительно этой оси.
- Два одинаково направленных гармонических колебания одинакового периода T1=T2=2 с с амплитудами A1=4 см и A2=8 см имеют разность фаз j=45°. Определить амплитуду и начальную фазу результирующего колебания.
- Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x=8sin2pt и y=4cos2pt см. Определить уравнение траектории точки и изобразить ее с нанесением масштаба. Показать направление движения точки.
- Уравнение плоской механической волны, распространяющейся в упругой среде, имеет вид x=10-8×sin(6280t-1,256x). Определить длину волны и скорость ее распространения.
- Определить скорость распространения волны в упругой среде, если разность фаз колебаний двух точек среды, отстоящих друг от друга на расстонии Dx=10 см, равна Dj=p/3. Частота колебаний равна n=25 Гц.
- Логарифмический декремент затухания колебаний маятника l=0,003. Определить число колебаний, которое должен сделать маятник, чтобы его амплитуда уменьшилась в 2 раза.
- Кинетическая энергия частицы оказалась равна ее энергии покоя. Какова скорость этой частицы?
- Стержень движется в продольном направлении с постоянной скоростью относительно инерциальной системы отсчета. При каком значении скорости длина стержня в этой системе отсчета будет на 1 % меньше длины покоящегося стержня?
- Найти собственное время жизни нестабильной частицы m-мезона, движущегося со скоростью 0,99×С, если расстояние, пролетаемое до распада, равно примерно 10 км.
- Радиоактивное ядро, вылетевшее из ускорителя со скоростью 0,4×С (С – скорость света в вакууме), выбросило в направлении своего движения b-частицу со скоростью 0,75×С относительно ускорителя. Найти скорость частицы относительно ядра.
- Электрон, скорость которого 0,97×С (С – скорость света в вакууме), движется навстречу протону, имеющему скорость 0,5×С. Определить скорость их относительного движения.
- Какую скорость должно иметь движущееся тело, чтобы его продольные размеры уменьшились в 2 раза?
- p-мезон – нестабильная частица. Собственное время жизни его 2,6×10-8 с. Какое расстояние пролетит p-мезон до распада, если он движется со скоростью 0,99×С (С -скорость света в вакууме)?
- С какой скоростью движется электрон, если его кинетическая энергия 1,78 Мэв? Определить импульс электрона.
- Определить скорость нейтрона, если его релятивистская масса в 3 раза больше массы покоя. Вычислить кинетическую и полную энергии нейтрона.
- Масса движущегося протона 2,25×10-27 кг. Найти скорость и кинетическую энергию протона.