Эталонная модель взаимосвязи открытых систем
Связь представляет собой совокупность сетей и служб связи (рис. 9.12). Служба электросвязи – это комплекс средств, обеспечивающий представление пользователям услуг. Вторичные сети обеспечивают транспортировку, коммутацию сигналов в службах электросвязи. Первичные сети снабжают вторичные сети каналами. Составной частью соответствующей службы является оконечное оборудование, которое располагается у пользователя.
Рис. 9.12. Архитектура связи.
Обмен информацией в любых службах электросвязи должен осуществляться по определенным, заранее оговоренным правилам. Эти правила (стандарты) разрабатываются рядом международных организаций электросвязи.
Так в 1978 г. в международной организации по стандартизации (МОС) был создан подкомитет SC16, задачей которого являлась разработка международных стандартов для взаимосвязи открытых систем. Под термином “открытая система” подразумевалась такая система, которая может взаимодействовать с любой другой системой, удовлетворяющей требованиям открытой системы [13]. Система является открытой тогда, когда она соответствует эталонной модели взаимосвязи открытых систем (ВОС). Эталонная модель ВОС является наиболее общим описанием структуры построения стандартов. Она определяет принципы взаимосвязи между отдельными стандартами и является основой для обеспечения возможности параллельной разработки множества стандартов, которые требуются для ВОС.
В качестве эталонной модели в 1983 г. утверждена семиуровневая модель (рис. 9.14), в которой все процессы, реализуемые открытой системой, разбиты на взаимноподчиненные уровни. Уровень с меньшим номером представляет услуги смежному с ним верхнему уровню и пользуется для этого услугами смежного с ним нижнего уровня. Самый верхний (7) уровень только потребляет услуги, а самый нижний (1) только их предоставляет.
Рис. 9.14. Структура эталонной модели ВОС.
В семиуровневой модели протоколы нижних уровней (1-3) ориентированы на передачу информации, верхних уровней (5-7) – на обработку информации. Протоколы транспортного уровня в литературе иногда выделяют отдельно, так как он непосредственно не связан с передачей информации. Однако этот уровень (4) ближе по своим функциям к трем нижним уровням (1-3), чем к трем верхним (5-7). Поэтому в дальнейшем мы его будем относить к нижнему уровню.
Задачей всех семи уровней является обеспечение надежного взаимодействия прикладных процессов. При этом под прикладными процессами понимают процессы ввода, хранения, обработки и выдачи информации для нужд пользователя. Каждый уровень выполняет свою задачу. Однако уровни подстраховывают и проверяют работу друг друга.
Краткая характеристика уровней приведена в таблице 9.1 [14].
Таблица 9.1
Функции выполняемые уровнями систем
№ уровня | Наименование уровня | Функции, реализуемые уровнем |
Прикладной | Представление или потребление информационных ресурсов. Управление прикладными программами | |
Представительный | Представление (интерпретация) смысла (значения) содержащейся в прикладных процессах информации. | |
Сеансовый | Организация и проведение сеансов взаимодействия между прикладными процессами | |
Транспортный | Передача массивов информации, кодированных любым способом | |
Сетевой | Маршрутизация и коммутация информации, управление потоками данных. | |
Канальный | Установление, поддержание и разъединение соединения | |
Физический | Физические, механические и функциональные характеристики каналов. |
Эталонная модель ВОС является удобным средством для распараллеливания разработки стандартов для взаимосвязи открытых систем. Она определяет лишь концепцию построения и взаимосвязи стандартов между собой и может служить базой для стандартизации в различных сферах передачи, хранения и обработки информации.
Третье задание
Вариант
13.1. Краткая характеристика сетей мобильной (подвижной) радиосвязи
В последние годы наблюдается резкий рост числа пользователей радиосетей как у нас в стране, так и за рубежом. В ряде случаев такие сети целесообразно создавать не только для обеспечения связи между подвижными объектами, где таким сетям нет альтернативы, но и для организации связи между стационарными объектами. Достоинства радиосетей (беспроводных сетей) перечислены в табл. 13.1.
Во многих случаях окупаемость беспроводных сетей составляет 1–2 года. В то же время срок окупаемости проводных значительно выше. Проводные сети экономически нецелесообразны на местностях с малой плотностью населения, например в случае, когда требуется обеспечить телефонную связь с удаленной от райцентра фермой.
В настоящее время доминирующее положение на рынке подвижной радиосвязи занимают [1]:
- профессиональные (частные) системы подвижной связи;
- системы персонального вызова;
- системы беспроводных телефонов;
- системы сотовой связи общего пользования.
Первые системы подвижной радиосвязи создавались и развивались в интересах государственных организаций, коммерческих структур, скорой помощи, милиции и т.п. В принятой за рубежом классификации эти системы относятся к так называемым профессиональным системам подвижной радиосвязи PMR (Professional Mobile Radio). Как правило, PMR имеют радиальную или радиально-зоновую структуру сети.
В профессиональных системах подвижной радиосвязи наиболее эффективное использование выделенного частотного ресурса обеспечивается в системах со свободным доступом абонентов к общему частотному ресурсу, получивших название транкинговых (от англ. trunk – магистраль, шина). Различают транкинговые системы с последовательным (сканирующим) поиском свободного канала связи и с выделенным каналом управления. Сканирующий транкинг характеризуется значительным временем установления канала связи и может быть рекомендован при небольшом количестве каналов (до 5–8). Наиболее распространенным видом транкинговых систем связи являются системы с выделенным каналом управления, использующие стандарты МРТ 1327, МРТ 1317, МРТ 1343 и МРТ 1347, разработанные первоначально в Великобритании на диапазоны частот 174…225 МГц и распространенные позже на другие диапазоны [1].
Системы персонального радиовызова (СПРВ) гармонично сопрягаются с системами радиосвязи и передачи данных. Персональный радиовызов (пейджинг) – услуга электросвязи, обеспечивающая беспроводную одностороннюю передачу информации в пределах обслуживаемой зоны. По своему назначению СПРВ можно разделить на частные (ведомственные) и общего пользования.
Частные СПРВ обеспечивают передачу сообщений в локальных зонах или на ограниченной территории в интересах отдельных групп пользователей. Как правило, передача сообщений в таких СПРВ осуществляется с пультов управления диспетчерами без взаимодействия с ТФ ОП.
Под системами персонального радиовызова общего пользования понимается совокупность технических средств, через которые с помощью ТФ ОП происходит передача в радиоканале сообщений ограниченного объема.
Основными компонентами коммерческого успеха этих систем являются: широкая зона обслуживания в масштабах страны с возможностью межнационального взаимодействия; низкие тарифы и арендная плата; простота передачи сообщений и удобство пользования; малые габариты приемников СПРВ и длительный срок непрерывной работы с одним источником.
Системы беспроводных телефонов были первоначально ориентированы на резидентное использование, т.е. в условиях офисов и квартир. Позже они стали развиваться как системы общего пользования, обеспечивающие поддержку услуг общего доступа.
Такие системы уже сейчас составляют определенную конкуренцию макросотовым сетям, которые будут более детально рассмотрены ниже.
Сети связи с подвижными объектами могут иметь радиальную, радиально-зоновую и сотовую структуру сети.
Радиальные системы основаны на использовании одной центральной наземной радиостанции, имеющей значительный радиус действия (до 50…100 км). При радиально-зоновой структуре сети область обслуживания делится на зоны, в каждой из которых используется радиальный принцип передачи сигналов.
Радиальным сетям присущ ряд недостатков, основными из которых являются ограниченность зоны обслуживания, нерациональное использование имеющегося частотного ресурса, невозможность существенного увеличения числа обслуживаемых абонентов из-за появления взаимных помех. Для передачи информации в радиальных системах выделяется диапазон частот . В этом диапазоне организуются каналы с полосой пропускания
. Тогда число каналов N в диапазоне
:
Очевидно, что число каналов N и будет определять число абонентов, пользующихся радиосвязью.
Для преодоления ограничений на число каналов в условиях ограниченного частотного ресурса была предложена сотовая идеология построения сетей радиосвязи, позволяющая использовать одни и те же частоты в нескольких ячейках (сотах), отстоящих друг от друга на расстояние, зависящее от размеров соты*.
Идея сотовой телефонной связи такова (рис. 13.1).
Площадь, подлежащая телефонизации, покрывается сетью базовых приемопередатчиков (Base Transceiver Station – BТS). При этом чувствительность и излучаемая мощность базовой станции гораздо выше, чем чувствительность и мощность излучения мобильной станции (Mobile Station – MS), что позволяет сделать сами телефоны достаточно компактными и использовать источники питания ограниченной емкости. При перемещении MS через границу зоны обслуживания BS (соты) должно обеспечиваться автоматическое (и незаметное для абонента) переключение обслуживания с одной базовой станции на другую. Переключение осуществляет центр коммутации подвижной сети (Mobile Service Switching Center – MSC). Центр коммутации подвижной связи (MSC) имеет выход на коммутируемую телефонную сеть общего пользования (PSTN – Public Switched Telephone Network).
Если представить зону обслуживания абонентов сотовой сети как окружность с радиусом (рис. 13.2), то площадь этой зоны будет
площадь соты (шестиугольника) равна
, где
– радиус рабочей зоны BS, тогда число сот L определяется по формуле
(13.1)
Очевидно, что число BS равно числу сот, так как на каждую соту приходится одна базовая станция.
Соты группируются в кластеры. В одном кластере находится с базовых станций, работающих в неповторяющихся диапазонах частот, каждая из BS обеспечивает I каналов. Общее число каналов в кластере равно cI, а общая полоса, занимаемая этими каналами,
(13.2)
где – полоса пропускания одного канала.
Так как в зоне обслуживания радиосвязью размещается L/c кластеров, работающих в повторяющихся диапазонах частот, то при том же ресурсе частот число каналов в сотовых сетях радиосвязи увеличивается в L/c раз по сравнению с радиальными системами радиосвязи.
Для увеличения числа абонентов надо стараться уменьшить число сот в кластере. Минимальное значение с равно 2.
Сотовая идеология систем подвижной связи начала разрабатываться в 70-х годах. Однако внедрение сотовых систем началось только после того, как были найдены способы определения текущего местоположения абонентов и обеспечения непрерывности связи при перемещении абонента из одной соты в другую.
Различают аналоговые и цифровые сотовые системы подвижной связи. Известно девять основных стандартов аналоговых систем. Один из них – NMT (Nordic Mobile Telephone System) принят в качестве федерального стандарта для России
Однако аналоговые системы уже не удовлетворяют современному уровню развития информационных технологий из-за ряда недостатков, главные из которых несовместимость стандартов, ограниченная зона действия, низкое качество связи, отсутствие засекречивания передаваемых сообщений и взаимодействия с цифровыми сетями с интеграцией служб и пакетной передачи данных. Пик числа абонентов аналоговых сетей приходится на 1994 г. В настоящее время в мире наблюдается снижение числа пользователей аналоговых сетей.
В 80-х годах в Европе, Северной Америке и Японии приступили к интенсивному изучению принципов построения перспективных цифровых систем и сегодня уже разработаны три стандарта таких систем, один из них, GSM-900, принят в качестве федерального для цифровых сотовых сетей России.
Внедрение сетей подвижной радиотелефонной связи в России началось в 60-х годах с вводом в действие отечественного оборудования системы «Алтай-1». В первых десятилетиях эти сети предназначались в основном для организации оперативной связи должностным лицам органов государственного и административно-хозяйственного управления.
По мере изменения в России социальных и экономических условий появилась необходимость расширения сетей радиотелефонной связи, повышения качественных показателей услуг, предоставляемых этими сетями. Решение этой задачи в настоящее время можно обеспечить только путем использования передовых зарубежных технологий и инвестирования работ по созданию в стране систем сухопутной подвижной радиосвязи общего пользования* (СПР-ОП).
13.2. Аналоговые сотовые сети подвижной радиосвязи
Стандарты аналоговых сотовых систем[1–5]. Первым в мире стандартом сотовых сетей радиотелефонной связи является стандарт NMT-450. Этот стандарт был введен в эксплуатацию в 1981 г. в Дании, Финляндии, Норвегии и Швеции. В системе NMT-450 для передачи информации от BS к MS используется поддиапазон 463…467,5 МГц, а для передачи от MS к BS поддиапазон 453…457,5 МГц. Каналы в этих поддиапазонах занимают полосу 25 кГц. Таким образом в каждом поддиапазоне размещается 180 каналов. В среднем один канал с частотной модуляцией может обслужить 25–30 абонентов при нагрузке от одного абонента до 0,025 эрланга.
В 1983 г. в США был введен в эксплуатацию стандарт AMPS (American Advanced Mobile Phone System). В отличие от стандарта NMT-450, который предусматривает связь между абонентами, находящимися в любых частях страны, стандарт AMPS был первой системой сотовой радиосвязи, ориентированной на города. Связь от BS к MS осуществляется в поддиапазоне 870–890 МГц, от MS к BS – в поддиапазоне 825–845 МГц. В каждом из поддиапазонов размещается 666 каналов. AMPS является единственным стандартом, предоставляющим возможность плавного перехода с аналогового на цифровое оборудование при их совместном использовании в единой системе. Такое совмещение поддерживается современными портативными телефонами (Dual Mode), работающими как по цифровым, так и по аналоговым каналам. Это позволяет минимизировать затраты на создание системы сотовой связи, используя на начальном этапе аналоговое оборудование, а в последующем его цифровую модернизацию (DAMPS).
Стандарт TACS (Total Access Communication System) является европейским вариантом стандарта AMPS и эксплуатируется в Европе с 1986 г. Емкость системы TACS примерно на 50 % больше, чем системы AMPS, и она работает в диапазоне 900 МГц.
Самый современный среди аналоговых стандартов стандарт NMT-900. Этот стандарт базируется на стандарте NMT-450 и работает в диапазоне 900 МГц (890–915 и 935–960 МГц). Число каналов в NMT-900 1999, а полоса пропускания каждого канала 25 кГц. Система NMT-900, по сравнению с NMT-450, помимо большего числа каналов, что чрезвычайно важно с точки зрения пользователя, обеспечивает более совершенные услуги, такие как переадресация вызова, услуги телефона-автомата и др. Эта система обеспечивает регулировку мощности выходного сигнала MS из коммутационной станции (уменьшая ее, когда MS находится поблизости от BS, и увеличивая при удалении от BS); время переключения при переходе из одной соты в другую около 300 мс (в NMT-450 это время равно 1,25 с, и на это время связь прерывается). В системе NMT-900 обеспечивается режим экономии аккумулятора MS, а для улучшения качества передачи речи используются устройства типа компандер/экспандер.
Сотовая сеть на основе стандарта NMT-450. В состав сети входят: центр коммутации подвижной связи (MSC), в качестве которого может использоваться, например, цифровая станция АХЕ-10, оснащенная специальным блоком сопряжения с сотовой сетью; BS (базовые станции); MS (мобильные станции).
ЦКПС (MSC) обеспечивает управление системой подвижной радиосвязи и является интерфейсом между подвижной станцией и стационарной телефонной сетью. Структурная схема типовой сети
приведена на рис. 13.4, каждый ЦКПС обслуживает группу базовых станций. На каждой BS один канал используется как канал вызова, он маркируется специальным сигналом опознавания. Один или несколько каналов, когда они свободны, маркируются сигналом, показывающим, что канал свободен. Мобильные станции постоянно работают на прием на канале вызова. Если все каналы связи заняты, то ЦКПС может разрешить использование канала вызова для ведения переговоров.
В дополнение к сигналам, различающим каналы вызова и каналы связи (каналы для разговора), имеются сигналы, определяющие зону обслуживания и страну, а также сигналы, обозначающие номер канала. Все служебные сигналы цифровые.
Одним из основных требований к федеральной сотовой сети связи является требование обеспечения роуминга, заключающегося в возможности вызова абонента, который переместился в другую зону связи (другой город, другую страну и т.п.). Это требование делает необходимым введение в MSC регистра местоположения абонентов для того, чтобы можно было отслеживать перемещения своих абонентов. Этот регистр часто называют «домашним». Когда MS перемещается из одной зоны связи в другую, она автоматически посылает MSC, контролирующему новую зону, сигнал об изменении местоположения, т.е. регистрируется в новой зоне в регистре, который называется «визитным». От нового «визитного» MSC информация об изменении адреса MS передается по стационарной телефонной сети или по сети передачи данных на MSC, где зарегистрирован абонент. В регистре, в который внесена MS на своем («домашнем») MSC, делается поправка, и все вызовы в адрес этой MS переадресовываются в зону действия новой MSC.
Системы стандарта NMT-450 эксплуатируются в ряде городов страны, таких как Москва, Санкт-Петербург, Новосибирск и др.
Задание
Вариант
13.3. Цифровые сотовые сети подвижной радиосвязи
Стандарты цифровых сотовых систем[1–16]. В 1982 г. Европейская конференция администраций почт и связи (СЕРТ) организовало рабочую группу под названием Group Speciale Mobile (GSM) для разработки общих технических условий первой цифровой мобильной сети. Внедрение стандарта началось в 1991 г. Передача в системе GSM-900 ведется в диапазоне 890–915 МГц для передатчиков MS и 935–960 МГц для передатчиков BS. В полосе 25 МГц размещается 124 канала, каждый из которых занимает полосу 200 кГц. Каждый частотный канал уплотняется по времени (8 временных позиций). Таким образом, общее количество каналов в полосе 25 МГц равно 992.
Американский цифровой стандарт ADS (D-AMPS) разрабатывался для отличных от Европы условий: диапазон 800 МГц и работа в общей с существующей аналоговой AMPS полосе частот. Сохранен также разнос каналов 30 кГц. Применение временного разделения каналов (три временных канала на одну несущую), а также сот с малым радиусом позволило значительно увеличить емкость D-AMPS по сравнению с AMPS. Обеспечение требования совместимости аналоговой и цифровой сети, а также сохранение существующего парка аналоговых абонентских станций в новых условиях работы привели к необходимости создания и применения аналого-цифровых MS с автоматическим выбором режима передачи и приема.
Японский стандарт IDS во многом совпадает с американским. Основные отличия заключаются в использовании другого частотного диапазона, а именно 810–826 МГц и 940–956 МГц. Стандарт адаптирован также к диапазону 1,5 ГГц. Количество речевых каналов на одну несущую в зависимости от скорости преобразования речи 3 или 6, разнос частотных каналов 25 кГц.
Цифровые системы GSM, D-AMPS, IDS являются системами сотовой связи второго поколения.
Принципы построения цифровых систем позволили применить при организации сотовых сетей новые, более эффективные, чем в аналоговых системах, модели повторного использования частот. В результате без увеличения общей полосы частот значительно возросло число каналов на соту. Так, вид модуляции, способы кодирования и формирования сигналов в каналах связи, принятые в GSM, обеспечивают прием сигналов при отношении сигнал – помеха 9 дБ, в то время как в аналоговых системах этот показатель равен 18 дБ. Поэтому передатчики BS, работающие на совпадающих частотах, могут размещаться в более близко расположенных сотах без ухудшения качества связи.
В рамках макросотовой структуры сотовых сетей, на основе которой построены существующие аналоговые и цифровые сети, дальнейшее увеличение их емкости может быть достигнуто двумя способами: расширением используемой полосы частот и снижением уровня межканальных помех, что даст возможность чаще повторять частоты.
Первый способ очевиден, но трудно реализуем из-за дефицита частотного ресурса.
Второй способ, связанный со снижением уровня межканальных помех, основан на следующих методах: применение секторных (направленных) антенн в сотах вместо антенн с круговой диаграммой направленности; адаптивное распределение каналов по сотам с учетом нагрузки и минимизации отношения сигнал – помеха; автоматическая регулировка уровня мощности передающих устройств MS и BS; использование методов пространственного разнесения антенн на приеме.
С помощью секторных антенн в моделях повторного использования частот с двумя BS можно увеличить емкость сетей стандарта GSM до 40 % по сравнению с использованием антенн с круговой диаграммой направленности при коэффициенте повторного использования частот C = 7.
Адаптивное распределение каналов по сотам с учетом нагрузки и минимизации отношения сигнал – помеха позволяет увеличить емкость сетей на 40–50 %.
Автоматическая регулировка мощности передатчиков MS и BS в процессе сеанса связи также эффективно уменьшает межканальные помехи [1].
Пространственное разнесение антенн дает общий выигрыш в отношении сигнал – помеха около 4…7 дБ. В стандарте IDS достигается максимальный выигрыш за счет разнесения антенн на BS и MS. В стандарте GSM и ADС предусматривается разнесение антенн только на BS. Совместное применение адаптивного распределения каналов и пространственное разнесение антенн увеличивают емкость сетей стандарта ADС в 8,7 раза, по сравнению с аналоговыми системами. Для GSM и IDS этот коэффициент может быть более 10 [4].
На этапе создания сотовых систем второго поколения основными методами увеличения их емкости являются переход от макросот к микросотам (радиус сотни метров), а также эффективные методы повторного использования частот. Однако они ограничивают возможности сотовых систем второго поколения по емкости и видам предоставляемых услуг связи в рамках выделенного диапазона частот.
Если не учитывать перехода на полускоростные каналы связи (каналы, в которых в 2 раза уменьшена скорость преобразования аналоговых сигналов в цифровые), то рост емкости сотовых систем второго поколения может происходить только путем перевода существующих стандартов в новые диапазоны частот. В качестве примера можно привести распространение рекомендаций стандарта GSM-900 на стандарт DCS-1800.
Дальнейшее увеличение емкости сотовых сетей без значительного расширения рабочей полосы частот возможно при создании новых протоколов связи и методов управления сетью, включающих процедуры распределения частотных и временных каналов по сети, местоопределения MS и «эстафетной передачи». Данные задачи решаются в рамках создания сотовой системы третьего поколения, которая будет отличаться унифицированной системой радиодоступа, объединяющей существующие сотовые и бесшнуровые системы с информационными службами ХХI века.
Такая система разрабатывается под названием UMTS (Universal Mobile Telecommunications Servise – универсальная система подвижной связи). Для будущей системы подвижной связи общего пользования рекомендуется диапазон частот 1…3 ГГц, в котором будет выделена полоса 60 МГц для персональных станций и 170 МГц для подвижных станций. Международный союз электросвязи (МСЭ) признал, что космические системы передачи должны быть неотъемлемой частью будущей сети.
Цифровая сотовая сеть стандарта GSM-900 [1–5]. Архитектура сети GSM-900 представлена на рис. 13.7. Сеть состоит из следующих основных подсистем: подсистемы базовых станций (базовые станции и
базовые контроллеры); подсистемы сети в составе центра коммутации подвижной связи (Mobile Switching Center – MSC), баз данных (HLR, VLR, EIR) и центра аутентификации (Authentification Center – AUC); подсистемы эксплуатации и техобслуживания (Operations and Maintenance Center – OMC).
Стандартные интерфейсы, обозначенные на рис.13.7, позволяют стыковать как оборудование, так и сети различных поставщиков. Так, стандартный радиоинтерфейс позволяет использовать подвижные станции, производимые в разных странах, различающиеся по своим возможностям, дизайну, цене.
Особое место в системе GSM-900 занимают интерфейсы на основе системы сигнализации SS N7 (ОКС-7), которая используется как для связи с внешними стационарными сетями PSTN, ISDN, PSPDN (Public Switched Packet Data Network), CSPDN (Circuit Switched Public Data Network), так и для соединения с сетью подвижной связи на основе оборудования NMT-450.
Остановимся более подробно на характеристике отдельных подсистем.
Центр коммутации подвижной связи (MSC) обслуживает группу сот и обеспечивает все виды соединений. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами; эстафетную передачу, в процессе которой достигается непрерывность передачи при перемещении подвижной станции (MS) из соты в соту. MSC осуществляет постоянное слежение за мобильными станциями, используя регистры положения (Home Link Register – HLR), визитный (Visit Link Register – VLR). В регистре положения хранится та часть информации о местоположении какой-либо мобильной станции, которая позволяет MSC доставить вызов MS. Регистр положения HLR содержит международный идентификационный номер подвижного абонента (International Mobile Subscriber Identify – IMSI). Он используется для опознавания мобильной станции в центре аутентификации. HLR представляет собой справочную базу данных о постоянно прописанных в сети абонентах, так называемых «домашних» (Home) абонентах. В ней содержатся опознавательные номера и адреса, а также параметры подлинности абонентов, состав услуг связи, специальная информация о маршрутизации. Ведется регистрация данных о роуминге (блуждании) абонента, включая данные о временном идентификационном номере подвижного абонента (Temporary Mobile Subscriber Identity – TMSI) и соответствующем визитном регистре, где отметился прибывший из другой сети абонент. К данным, содержащимся в HLR, имеют дистанционный доступ все MSC и VLR сети. Доступ к базе данных об абонентах осуществляется по номеру IMSI или MSISDN (номеру подвижного абонента в сети ISDN). К базе данных HLR в рамках обеспечения межсетевого роуминга абонентов могут получить доступ MSC или VLR, относящиеся к другим сетям.
Второе основное устройство, обеспечивающее контроль за передвижением MS из зоны в зону, – визитный регистр VLR. С его помощью достигается функционирование MS за пределами зоны, контролируемой HLR. Когда в процессе перемещения MS переходит из зоны действия одного контроллера базовой станции (Base Station Controller – BSC), объединяющего группу BS, в зону действия другого BSC, она регистрируется новым BSC, и в VLR заносится информация о номере области связи, которая обеспечит доставку вызовов MS.
VLR содержит такие же данные, как и HLR, однако эти данные содержатся в VLR только до тех пор, пока абонент находится в зоне, контролируемой VLR.
В сети подвижной связи GSM соты группируются в географические зоны (Location Area), которым присваивается свой идентификационный номер. Каждый VLR содержит данные об абонентах нескольких географических зон. Когда абонент перемещается из одной географической зоны в другую, данные о его местоположении автоматически обновляются в VLR.
.
Подсистема базовой станции, как упоминалось выше, состоит из контроллера базовой станции (Base Station Controller – BSC) и приемно-передающих базовых станций (Base Transceiver Station – BTS). Контроллер базовой станции управляет несколькими BTS. Подсистема обеспечивает распределение радиоканалов, контролирует соединения, регулирует очередность предоставления радиоканалов, осуществляет модуляцию, демодуляцию сигналов, кодирование и декодирование сообщений, кодирование речи и другие функции.
Центральным звеном сети GSM является центр эксплуатации и технического обслуживания (Operations and Maintenance Center – OMC). Он обеспечивает контроль и управление компонентами сети и контроль качества ее работы
Задание
Вариант
Глава 14. Транкинговые системы радиосвязи
Транкинговые системы радиосвязи (ТСР) являются развитием систем низовой полудуплексной радиосвязи и по ряду признаков могут быть соотнесены с сотовыми системами связи. В отличие от обычных систем с постоянно закрепленными частотными каналами в ТСР применяется динамическое распределение каналов. Термин «транкинг», принятый в сфере профессиональной радиосвязи, означает метод свободного доступа большого числа абонентов к ограниченному числу каналов (пучку, стволу или, по зарубежной терминологии, – транку). Поскольку в какой-либо момент времени не все абоненты активны, необходимое число каналов значительно меньше общего числа абонентов.
Когда радиоабонент транкинговой системы осуществляет вызов, система назначает ему один из имеющихся свободных каналов. При этом статистика активности обычно такова, что небольшого количества выделенных каналов достаточно для обслуживания значительного числа абонентов. Эту ситуацию иллюстрируют цифры, заимствованные из документации на систему ACCESSNET фирмы Rohde & Schwarz (табл. 14.1).
В отличие от обычных систем радиосвязи ТСР характеризуются следующими признаками:
- экономное использование радиоспектра;
- наличие одной или нескольких базовой радиостанций и системы управления;
- возможность выхода в другие сети, в частности в телефонную сеть общего пользования;
- увеличение зоны обслуживания путем создания многозоновой сети;
- передача данных и телеметрической информации;
- множество сервисных возможностей.
Таблица 14.1. Зависимость числа абонентов от числа радиоканалов
Число каналов | Общее число абонентов |
Перечисленные выше признаки характерны и для сотовых систем связи. Однако в отличие от сотовых транкинговые системы в первую очередь ориентированы на задачи, связанные с оперативным управлением. Список потребителей здесь чрезвычайно широк – подразделения железных и автомобильных дорог, предприятия энергетического комплекса, администрации всех уровней, учреждения городского хозяйства, правоохранительные органы, отряды МЧС, коммерческие структуры и т.д.
В сравнении с сотовыми системами к преимуществам ТСР, позволяющим отдать им предпочтение при организации оперативной связи, следует отнести:
- гибкую систему вызовов – индивидуальный, групповой, вещательный, приоритетный, аварийный и др.;
- гибкую систему нумерации – от коротких двух- или трехзначных до полноценных городских номеров;
- малое время установления соединения – менее секунды, против нескольких секунд в сотовых системах;
- возможность работы в группе;
- наличие (в ряде систем) режима непосредственной связи между двумя абонентскими радиостанциями без участия базовой;
- экономичность – по стоимости оборудования и по эксплуатационным расходам ТСР в несколько раз экономичнее сотовых систем.
Сравнивая сотовые и транкинговые системы, необходимо отметить, что при внешней структурной схожести они существенно отличаются по ряду функциональных особенностей и системных возможностей. Если первые ориентированы на потребителей обычных телефонных услуг и окупаются в регионах с высокой плотностью населения (порядка тысячи и более абонентов в зоне), то вторые прежде всего являются средством оперативной и производственно-технологической связи и рентабельны при на порядок меньшем числе абонентов.
Следует заметить, что сами термины «сотовые» или «транкинговые системы» малоинформативны с точки зрения выявления их отличий. Так, в сотовых системах используется метод динамического распределения каналов, т.е. транкинг, и наоборот, современные многозоновые транкинговые системы содержат ряд «родовых» признаков сотовых систем. Эти термины сложились исторически и обозначают системы мобильной радиосвязи, которые развивались своими путями, решая разные задачи.
- индивидуальный вызов для связи между двумя абонентами;
- групповой вызов для связи между несколькими абонентами одновременно;
- вещательный вызов для предварительно выбранной группы, когда абоненты могут только слушать сообщение, но не могут отвечать;
- конференц-вызов для подключения к разговору третьего абонента во время разговора двух абонентов;
- переадресация вызова: вызовы, адресованные абоненту, автоматически переадресуются заранее назначенному третьему абоненту;
- приоритетный вызов применяется для сокращения времени ожидания при занятости системы; такие вызовы обслуживаются вне общей очереди;
- срочный (аварийный) вызов имеет наивысший приоритет, связь устанавливается немедленно путем прерывания уже установленных соединений;
- статусная связь – посылка коротких текстовых сообщений любому другому абоненту или диспетчеру;
- передача блоков данных применяется для связи между компьютерами или другими системами обработки цифровой информации;
- диспетчерская связь – вызовы на специально сконфигурированные диспетчерские пульты;
- исходящие и входящие вызовы для абонентов телефонной сети обеспечивают взаимодействие радиоабонентов с абонентами ведомственной сети или сетью общего пользования.
Благодаря перечисленным особенностям транкинговые системы заняли самостоятельную нишу на рынке оборудования средств радиосвязи. Многие ведущие фирмы – Motorola, Nokia, Ericsson и др. – наряду с обычными радиостанциями производят также и сотовое, и транкинговое оборудование, ориентированное на соответствующие секторы этого рынка.
14.1. Архитектура транкинговых сетей
Архитектура транкинговых сетей в основном аналогична архитектуре сотовых сетей. Рассмотрим основные элементы архитектуры ТСР на примере типовой однозоновой транкинговой системы с частотным разделением каналов (рис. 14.1).
Базовая радиостанция (рис. 14.2).Содержит модули приемопередатчиков (ретрансляторов), каждый из которых настроен на одну пару частот – приема и передачи. Таким образом, в отличие от обычной связи между двумя радиостанциями, где в полудуплексном режиме достаточно одной частоты, в транкинговой системе требуется две частоты, а для работы в дуплексном режиме – четыре. Эту ситуацию иллюстрирует рис. 14.3. Каждый из приемопередатчиков имеет 4-проводное низкочастотное (звуковое) окончание для сопряжения с коммутатором. Радиочастотные входы/выходы приемопередатчиков нагружены на устройство объединения/разделения каналов.
Коммутатор. Осуществляет соединение подвижных абонентов, а также выполняет функции сопряжения с телефонной сетью общего пользования.
Контроллер (устройство управления). Обеспечивает взаимодействие всех узлов базовой станции. Осуществляет обработку вызовов и управляет процессом установления соединений. Часто контроллер и коммутатор объединяются в одном модуле.
Интерфейс с ТФОП. Предназначен для сопряжения с телефонной сетью общего пользования. Обеспечивает электронный стык с окончаниями АТС и согласование протоколов сигнализаций.
Абонентское оборудование. Представлено носимыми, возимыми, стационарными радиостанциями, а также терминалами передачи данных и устройствами телеметрии.
Задание
Пункт.
Идея сотовой телефонной связи такова (рис. 13.1).
Площадь, подлежащая телефонизации, покрывается сетью базовых приемопередатчиков (Base Transceiver Station – BТS). При этом чувствительность и излучаемая мощность базовой станции гораздо выше, чем чувствительность и мощность излучения мобильной станции (Mobile Station – MS), что позволяет сделать сами телефоны достаточно компактными и использовать источники питания ограниченной емкости. При перемещении MS через границу зоны обслуживания BS (соты) должно обеспечиваться автоматическое (и незаметное для абонента) переключение обслуживания с одной базовой станции на другую. Переключение осуществляет центр коммутации подвижной сети (Mobile Service Switching Center – MSC). Центр коммутации подвижной связи (MSC) имеет выход на коммутируемую телефонную сеть общего пользования (PSTN – Public Switched Telephone Network).
Если представить зону обслуживания абонентов сотовой сети как окружность с радиусом (рис. 13.2), то площадь этой зоны будет
площадь соты (шестиугольника) равна
, где
– радиус рабочей зоны BS, тогда число сот L определяется по формуле
(13.1)
Очевидно, что число BS равно числу сот, так как на каждую соту приходится одна базовая станция.
Соты группируются в кластеры. В одном кластере находится с базовых станций, работающих в неповторяющихся диапазонах частот, каждая из BS обеспечивает I каналов. Общее число каналов в кластере равно cI, а общая полоса, занимаемая этими каналами,
(13.2)
где – полоса пропускания одного канала.
Так как в зоне обслуживания радиосвязью размещается L/c кластеров, работающих в повторяющихся диапазонах частот, то при том же ресурсе частот число каналов в сотовых сетях радиосвязи увеличивается в L/c раз по сравнению с радиальными системами радиосвязи.
Для увеличения числа абонентов надо стараться уменьшить число сот в кластере. Минимальное значение с равно 2.
Сотовая идеология систем подвижной связи начала разрабатываться в 70-х годах. Однако внедрение сотовых систем началось только после того, как были найдены способы определения текущего местоположения абонентов и обеспечения непрерывности связи при перемещении абонента из одной соты в другую.
* Ячейки имеют форму шестиугольника и очень напоминают по форме пчелиные соты. Отсюда и название ячейки «сота».