Зависимости величины q от определяющих её факторов.
а. Обогащение топлива. С увеличением обогащения топлива (х) в нём возрастает концентрация ядер 235U, а, следовательно, возрастает и доля поглощаемых ядрами 235U тепловых нейтронов, т.е. величина q. Это справедливо и для гомогенных, и для гетерогенных реакторов.
х ® N5 ® q.
б. Соотношение количеств ядер урана и замедлителя в ячейке. Это соотношение в общем случае равно:
u = NUVт / NзVз, (7.2.30)
а в частностях называется уран-водным отношением (для реакторов с водным замедлителем) или уран-графитовым отношением (применительно к реакторам с графитовым замедлителем).
Чем выше величина u, тем выше число ядер урана в ячейке, и (при неизменном обогащении топлива) - выше и количество ядер 235U, а, значит, выше величина доли поглощаемых ядрами 235U тепловых нейтронов, то есть величина q.
u® NuVu ® N5Vu ® q.
в. Момент кампании активной зоны. В процессе кампании активной зоны реактора основное топливо в ней (235U) выгорает, уступая место образующимся при делении осколкам деления, которые в последующем бесполезно поглощают тепловые нейтроны. Из этого можно было бы заключить, что величина q в процессе кампании должна непрерывно падать, несмотря на получаемую в процессе кампании прибавку величины q за счёт накопления в работающем реакторе вторичного топлива (239Pu).
Но это не так, поскольку для обеспечения постоянного критического режима работы реактора из активной зоны его непрерывно извлекаются штатные регулирующие поглотители, идёт непрерывный процесс одновременного выгорания самовыгорающих поглотителей, осуществляется регулярное удаление из теплоносителя жидкого поглотителя (борной кислоты). Так что величина q в процессе кампании поддерживается практически неизменной в силу необходимости поддержания критичности реактора.
г. Температура в активной зоне. Средние температуры топлива и замедлителя в работающем на мощности энергетическом реакторе (независимо от его типа) всегда взаимосвязаны, и (по крайней мере, при постоянном расходе теплоносителя через активную зону реактора) характер этой взаимосвязи - прямой: чем выше уровень мощности реактора, тем выше средняя температура топлива в твэлах и тем выше средняя температура замедлителя в нём. Но так бывает не всегда: например, в ВВЭР, работающем по программе с постоянной средней температурой теплоносителя, увеличение тепловой мощности реактора, хотя и получается за счёт увеличения средней температуры топливной композиции в твэлах реактора, но практически не влияет на величину средней температуры воды в его активной зоне.
Влияние температуры топлива на величину q прослеживается через её влияние на характеристику внутреннего блок-эффекта в твэлах реактора - величину коэффициента экранировки F. Если температура топливной композиции в твэлах возрастает, то в топливной композиции (как в любом другом веществе) увеличивается длина диффузии тепловых нейтронов. Это означает, что поступающие из замедлителя тепловые нейтроны имеют возможность глубже проникать внутрь топливной композиции, за счёт чего радиальное распределение плотности потока тепловых нейтронов внутри твэла выравнивается. Поэтому среднерадиальное значение плотности потока тепловых нейтронов в твэле (Фсрт) приближается к максимальному его значению на поверхности топливной композиции (Фп). Величина коэффициента экранировки F = Фп/Фсрт при этом уменьшается, а величина коэффициента использования тепловых нейтронов q - растёт, поскольку твэл начинает более эффективно поглощать тепловые нейтроны всем своим объёмом. Поглощение тепловых нейтронов идёт с большей скоростью, так как оно происходит при более высоком значении средней плотности потока в твэле.
Второй канал влияния температуры на величину q, хотя и не столь существенный, но все же заметный, - через температурное влияние на характеристику внешнего блок-эффекта - величину относительного избыточного поглощения тепловых нейтронов в замедлителе каждой ячейки. Увеличение температуры замедлителя приводит к увеличению длины диффузии тепловых нейтронов в нём, также влекущему за собой радиальное выравнивание распределения Ф(r) в замедлителе ячейки, что приводит к уменьшению относительного избыточного поглощения тепловых нейтронов в замедлителе ячейки (E), отчего величина коэффициента использования тепловых нейтронов в каждой ячейке (и во всем реакторе) возрастает.
Таким образом, с возрастанием температуры в активной зоне величина q однозначно растет,давая положительный вклад в величину температурного эффекта реактивности реактора.
Краткие выводы
а) Уран-235 и плутоний-239 обозначают свое влияние на размножающие свойства активной зоны через влияние на величины двух коэффициентов, определяющих величину эффективного коэффициента размножения (kэ), - константы h и коэффициента использования тепловых нейтронов q.
б) Константа h - есть среднее число нейтронов деления, приходящееся на каждый поглощаемый делящимися под действием тепловых нейтронов ядрами топлива тепловой нейтрон. Константа h, строго говоря, является приблизительной физической константой только для ядер 235U. Для ядер 239Pu h константой уже не является, так как её величина существенно зависит от температуры. По этой же причине величина h не является физической константой для двухкомпонентного (235U + 239Pu) топлива, поскольку она зависит от соотношения ядерных концентраций (N9/N5) компонентов топливной смеси и от величины температуры топлива.
в) При практической независимости константы h5 для ядер урана-235 от температуры величина константы h59 для топлива энергетического реактора в произвольный момент кампании его активной зоны существенно зависит от температуры топливной композиции в твэлах. Эта зависимость с ростом температуры топлива имеет падающий характер, то есть даёт отрицательный вклад в общий температурный эффект реактивности реактора.
г) Коэффициент использования тепловых нейтронов q - это доля тепловых нейтронов, поглощаемых делящимися под действием тепловых нейтронов ядрами топлива, от числа тепловых нейтронов поколения, поглощаемых всеми материалами активной зоны. Его величина существенно зависит не только от состава активной зоны, но и от её структуры: в гетерогенной среде q меньше, чем в гомогенной размножающей среде такого же состава. Проигрыш в использовании тепловых нейтронов в гетерогенных реакторах обусловлен существованием двух специфических гетерогенных эффектов - внутреннего и внешнего блок-эффектов, имеющих свои количественные характеристики - коэффициент экранировки F и относительное поглощение тепловых нейтронов в замедлителе E.
д) Коэффициент экранировки F - это коэффициент радиальной неравномерности в распределении плотности потока тепловых нейтронов в топливном блоке: F = Фп/Фсрт - то есть это отношение максимальной величины Ф на поверхности топливного блока к среднерадиальной её величине в топливном блоке.
е) Относительное поглощение тепловых нейтронов в замедлителе ячейки E - величина абсолютной разницы скоростей поглощения тепловых нейтронов в объёме замедлителя ячейки при среднерадиальном и минимальном значениях плотности потока тепловых нейтронов в замедлителе ячейки, нормированная на каждый поглощаемый топливным блоком тепловой нейтрон.
ж) Получены аналитические зависимости для вычисления q в гомогенной размножающей среде и в гетерогенных двухтонных ячейках. Обоснован порядок оценочного расчёта q в многозонных ячейках активных зон тепловых энергетических реакторов с использованием метода двухзонной гомогенизации.
з) Установлены качественные зависимости величины q в энергетических реакторах от основных определяющих её факторов - обогащения топлива, уран-водного (уран-графитового) отношения и температуры.
и) Особо важной для эксплуатационника является температурная зависимость q, которая с ростом температуры топлива имеет характер однозначного возрастания, а, следовательно, является положительной составляющей температурного эффекта реактивности ядерного реактора. Положительный вклад в температурный эффект реактивности реактора даёт температурное увеличение q как за счёт роста температуры топлива, так и за счёт роста температуры замедлителя.
к) С ростом величины начального обогащения топлива растёт концентрация ядер урана-235 в нём, а потому растёт и доля поглощаемых ими тепловых нейтронов, то есть величина коэффициента использования тепловых нейтронов.
л) Увеличение значения уран-водного отношения (неважно, - за счёт увеличения объёма топливной композиции в ячейке или за счёт уменьшения объёма воды) также приводит к росту величины коэффициента использования тепловых нейтронов в реакторе.