![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Категории: АстрономияБиология География Другие языки Интернет Информатика История Культура Литература Логика Математика Медицина Механика Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Транспорт Физика Философия Финансы Химия Экология Экономика Электроника |
СТРУКТУРНЫЕ МАТРИЦЫ И ОПЕРАЦИИ С НИМИ
Для структурного анализа сетей (нахождения путей, сечений и их характеристик) целесообразно использовать структурные матрицы и некоторые операции, основанные на применении математического аппарата булевой алгебры. Каждый путь hst (сечение lst) будем представлять произведением (конъюнкцией) символов ребер, образующих этот путь (сечение), а множество путей (сечений) - дизъюнкцией (логической суммой) этих произведений. Так, для сети, изображенной на рис. 2, запишем: Структурной матрицей В сети G с N узлами будем называть квадратурную матрицу порядка N, в которой каждому узлу аi, соответствуют i-я строка и i-й столбец:
Здесь i, j = 1, N. Вхождения ij определяются по следующему правилу:
Если все ребра не направлены, то матрица будет симметричной по отношению к главной диагонали, а если есть направленные ребра, то несимметричной. Для сети, изображенной на рис. 6 структурная матрица будет иметь вид:
Структурную матрицу можно рассматривать как булеву матрицу и применять к ней аппарат булевой алгебры (алгебры логики); в частности, может быть применен аппарат преобразования булевых матриц и булевых определителей. Не останавливаясь подробно на этом аппарате, отметим только некоторые особенности, связанные с интерпретацией сети булевыми матрицами Рис. 6. Пример сети
В булевой алгебре, в которой переменные и функции могут принимать только два значения (0 и 1), используются три операции: логическое произведение (конъюнкция, обычно обозначаемая точкой, которая может опускаться, а иногда знаком В отличие от «обычной» алгебры, в булевой алгебре 1V1 = 1, а отсюда вытекают и некоторые особые преобразования: Aa = a; aVa = a; 1a = a; 1Va = 1; a(aVb) = a; aVab = a; a Произведение двух булевых квадратных матриц
При возведении структурной матрицы в квадрат получим новую структурную матрицу С = В2 с единицами по главной диагонали, а ее вхождения 2ij будут включать в виде суммы как не посредственное ребро bij (если оно было в сети), так и все пути ранга 2 (проходящие через один узел) от узла аi к узлу aj вида bilblj (если они есть в сети). Так, при возведении в квадрат матрицы В1соответствующей сети рис. 6, для вхождения 215 получим (выписываем первую строку и пятый столбец и производим перемножение)
т.е. от узла 1 к узлу 5 имеются прямое ребро b и путь ас ранга 2 (через узел 2). Проведя расчет, получим следующую матрицу В21 путей ранга r 2:
Для возведения в третью степень перемножаются матрицы В2 и В. Так, для определения вхождения 314 перемножаем первую строку матрицы В2 и четвертый столбец матрицы В:
Возведение структурной матрицы в q-ю степень приводит к тому, что каждое вхождение новой матрицы будет содержать все пути от узла ai к узлу аj, ранга не более q, т. е.
Матрица Мхар = Остановимся на некоторых правилах вычисления определителей (детерминантов) булевых матриц. Вычисление (раскрытие) таких определителей производится по методам, аналогичным методам вычисления определителей в обычной алгебре, с той разницей, что все члены, появляющиеся в процессе вычисления, берутся только со знаком V и производятся преобразования, вытекающие из законов булевой алгебры. Отметим некоторые особенности булевых определителей: а) если в определителе в каждой строке и столбце имеется хотя бы одна единица, то определитель тождественно равен 1; б) если в определителе какой-либо ряд (строка или столбец) состоит из одних нулей, то определитель тождественно равен нулю; в) если перед определителем имеется множитель х, то во всех вхождениях определителя х может быть заменен единицей, а Вычисление определителей производится разложением определителя по вхождениям какого-либо ряда (строки или столбца), что дает возможность при каждой операции снизить порядок определителя на единицу. При этом для уменьшения операций по «поглощению» лишних слагаемых рекомендуется раскладывать по ряду, в котором нет единиц. Разложение определителя матрицы А ранга N с вхождениями aij по i-й строке будет иметь вид:
где |Ajj|-определитель матрицы дополнения, полученной из матрицы А вычеркиванием i-й строки и j-го столбца. Для определителей третьего и второго порядка можно применить обычную процедуру раскрытия по диагонали, считая bijbji = 0 или a Задание на самоподготовку: 1. Ознакомиться с указанной литературой: /1, 2, 3, 4/ – в полном объеме.
|