При найденном значении C2 , уравнение (11) дает

(12)

Умножая здесь обе части на dt и снова интегрируя, найдем

(13)

Так как при t = 0 х = 0, то С3 = 0, и искомый закон движения груза будет

х = 2,5t2 + 8,4t - 0,5 sin (4t), (14)

где х - в метрах, t - в секундах.

 


Задача Д3

(тема: “Теорема об изменении кинетической энергии системы”)

 

Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f = 0,1), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0,3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0,1 м (массу каждого шкива считать равномерно распределенной по его внешнему ободу) (рис. Д3.0 – Д3.9, табл. Д3). Тела системы соединены друг с другом нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям.

Под действием силы F = f (s), зависящей от перемещения точки при­ложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно M4 и М5.

Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы равно s,. Искомая величина указана в столбце "Найти" таблицы, где обозначено: - скорость груза 1, - скорость центра масс катка 3, - угловая скорость тела 4 и т.д.

 

Таблица Д3

Номер усло-вия m1, кг m2, кг m3, кг m4, кг m5, кг M4, Н×м M5, Н×м F = f(s) s1, м Найти
0,8 50(2+3s) 1,0
0,6 20(5+2s) 1,2
0,4 80(3+4s) 0,8
0,3 40(4+5s) 0,6
0,6 30(3+2s) 1,4
0,9 40(3+5s) 1,6
0,8 60(2+5s) 1,0
0,6 30(8+3s) 0,8
0,3 40(2+5s) 1,6
0,4 50(3+2s) 1,4

Теорема об изменении кинетической энергии механической системы (краткие сведения из теории) Кинетическая энергия.Кинетической энергией точки называется величина , где m – масса точки, – абсолютная скорость точки. Кинетическая энергия механической системы , (1) где – масса точки системы, – абсолютная скорость этой точки. При поступательном движении твердого тела , где M – масса тела, – скорость тела; при вращении твердого тела вокруг неподвижной оси , где – момент инерции тела относительно оси вращения, w – угловая скорость тела; при плоском движении тела , где M – масса тела, – скорость центра масс, – момент инерции тела относительно оси, проходящей через центр масс С, w – угловая скорость тела.
Момент инерции тела относительно оси z – это величина , где – масса точки тела, – расстояние от этой точки до оси z. Момент инерции тела зависит от формы тела и положения оси z. Значения для однородных тел простой формы (кольцо, стержень, диск, прямоугольник, цилиндр и т. д.) приводятся в справочниках по механике; значения , необходимые для решения данной задачи, приведены ниже в указаниях к решению. Если задан радиус инерции r тела, то , где M – масса тела. Элементарная работа силыdAна бесконечно малом перемещении ds точки, в которой приложена сила, равна , (2) где – сила, ds – модуль бесконечно малого перемещения точки, – скорость точки, в которой приложена сила (направление совпадает с направлением ). Выражение (2) – одна из возможных форм записи . Например, если учесть, что , то из (2) следует еще одна форма записи: , (3) где dt – время бесконечно малого перемещения. Из (2) (или (3)) следует, что если ; если ; если ; если . Если сила приложена к точке вращающегося тела, то, применяя (2), получим , (4) где – момент силы относительно оси вращения тела, – бесконечно малый угол поворота тела. Если на тело действует пара сил, то (4) дает элементарную работу пары сил, где – момент пары сил относительно оси z. Работа силы на конечном перемещении точки из в . (5) Из (5) следуют выражения для работы силы в частных случаях. Работа силы тяжести (постоянной): , где P=mg – сила тяжести, – перемещение центра масс тела по вертикали. Знак “–“ соответствует движению центра масс вверх.  
Теорема об изменении кинетической энергии системы. Формулировка (в интегральной (конечной) форме): изменение кинетической энергии системы на некотором конечном перемещении системы из одного положения в другое равно сумме работ всех внешних и внутренних сил, приложенных к точкам системы на соответствующих конечных перемещениях точек приложения этих сил. Математическая запись: . Если система состоит из абсолютно твердых тел, соединенных нерастяжимыми нитями или стержнями (неизменяемая система), то .

Указания. Задача ДЗ - на применение теоремы об изменении кинетической энергии системы. При решении задачи учесть, что кинетическая энергия системы равна сумме кинетических энергий всех входящих в систему тел: эту энергию нужно выразить через ту скорость (линейную или угловую), которую в задаче надо определить. При вычислении кинетической энергии катка, совершающего плоское движение, для установления зависимости между его угловой скоростью и скоростью его центра масс воспользоваться понятием о мгновенном центре скоростей (кинематика). При определении работы все перемещения следует выразить через заданное перемещение s1, учтя, что зависимость между перемещениями здесь будет такой же, как между соответствующими скоростями.

Когда по данным таблицы m2 = 0, груз 2 на чертеже не изображать; шкивы 4 и 5 всегда входят в систему.

Пример ДЗ. Механическая система (рис. ДЗ) состоит из сплошного цилиндрического катка l, ступенчатого шкива 2 с радиусами ступеней R2 и r2 (масса шкива равномерно распределена по его внешнему ободу) и груза 3 (коэффициент трения груза о плоскость равен f ). Тела системы соединены друг с другом нитями, намотанными на шкив 2.

Под действием силы F = f (s), зависящей от перемещения s точки ее приложения, система приходит в движения из состояния покоя. При движении на шкив 2 действует постоянный момент М2 сил сопротивления. Дано: m1 = 4 кг, m2 = 10кг, m3 = 8 кг, R2 = 0,2 м, r2 = 0,1м, f = 0,2. М2 = 0,6 Н × м, F = 2(1+2s) Н, s1 = 2м. Определить: скорость центра масс катка, когда s = s1.

Решение. 1. Рассмотрим движение неизменяемой механической системы, состоящей из тел 1 2, 3, соединенных нитями. Изобразим все действующие на систему внешние силы: активные , момент сопротивления М2 реакции и силы трения и .

Для определения воспользуемся теоремой об изменении кинетической энергии системы

(1)

2. Определяем Т0 и Т. Так как в начальный момент система находилась в покое, то Т0 = 0. Величина Т равна сумме энергий всех тел системы:

(2)

Учитывая, что тело 1 совершает плоское движение, тело 3 движется поступательно, а тело 2 вращается вокруг неподвижной оси, получим

(3)

Все входящие сюда скорости следует выразить через искомую . Приняв во внимание, что точка K1 - мгновенный центр скоростей катка 1, и обозначив радиус катка через r1, получим

(4)

Кроме того, входящие в (3) моменты инерции имеют значения

(5)

Подставив все величины (4) и (5) в равенство (3), а затем используя равенство (2) получим окончательно:

(6)

3. Теперь найдем сумму работ всех действующих внешних сил при том перемещении, которое будет иметь система, когда точка С1 пройдет путь s1. Одновременно все перемещения следует выразить через заданную величину s1, для чего учтем, что здесь зависимость между перемещениями будет такой же, как и между соответствующими скоростями в равенствах (4), т.е. . В результате получим:

Работа остальных сил равна нулю, так как точка K1, где приложены силы и , является мгновенным центром скоростей, точка O, где приложены , и , неподвижна, а реакция перпендикулярна перемещению груза 3. Тогда окончательно

(7)

4. Подставив выражения (6) и (7) в уравнение (1) и учитывая, что T0 = 0, получим

(8)

При числовых значениях заданных величин равенство (8) дает

Отсюда находим искомую скорость.

Ответ: = 1.53м/с.


 

Задача Д4

(тема: “Принцип возможных перемещений”)

Механизм, расположенный в горизонтальной плоскости, находится под действием приложенных сил в равновесии; положение равновесия определяется углами , , , , (рис. Д4.0-Д4.9, табл. Д4а и Д4б). Длины стержней механизма (кривошипов) равны: l1 = 0,4 м, l4 = 0,6 м (размеры l2 и l3 произвольны); точка E находится в середине соответствующего стержня.

На ползун В механизма действует сила упругости пружины ; численно , где с – коэффициент жесткости пружины, – ее деформация. Кроме того, на рис. Д4.0 и Д4.1 на ползун D действует сила , а на кривошип О1А – пара сил с моментом М; на рис. Д4.2- Д4.9 на кривошипы O1A и О2D действуют пары сил с моментами M1 и М2.

Определить, чему равна при равновесии деформация пружины, и указать, растянута пружина или сжата.

Значения всех заданных величин для рис. Д4.0-Д4.4 приведены в табл. Д4а, а для рис. Д4.5-Д4.9 в табл. Д4б. В этих таблицах сила Q дана в ньютонах, а моменты М, M1, M2 – в ньютоно-метрах.

Построение чертежа начинать со стержня, направление которого определяется углом ; для большей наглядности ползун с направляющими и пружину изобразить так, как в примере Д4 (см. рис. Д4, а также рис. Д4.10б). Если на чертеже решаемого варианта задачи прикрепленный к ползуну В стержень окажется совмещенным с пружиной (как на рис. Д4.10а), то пружину следует считать прикрепленной к ползуну с другой стороны (как на рис. Д4.10б, где одновременно иначе изображены направляющие).

Перед выполнением задания прочтите по учебнику тему: «Принцип возможных перемещений».

 

Ответьте на вопросы:

1. Как определяется число степеней свободы системы?

2. Что такое обобщенные координаты?

3. Что называется возможными перемещениями системы?

4. Формулы для вычисления элементарной работы силы на возможном перемещении (сравните с формулами, которые применили в задаче Д4).

5. Какие связи называются идеальными?

6. Сформулируйте принцип возможных перемещений для системы и запишите соответствующее уравнение.

7. Запишите уравнение мощностей, эквивалентное принципу возможных перемещений.

Рис. Д4.0   Рис. Д4.1  
Рис. Д4.2 Рис. Д4.3  
Рис. Д4.4 Рис. Д4.5
Рис. Д4.6 Рис. Д4.7
 

Рис. Д4.8

Рис. Д4.9

 

Рис. Д4.10

Таблица Д4а(к рис. Д4.0-Д4.4)

Номер условия Углы, град с, Н/см Для рис. 0-1 Для рис. 2-4
M Q M1 M2

 

 

Таблица Д4б (к рис. Д4.5-Д4.9)

Номер условия Углы, град с, Н/см M1 M2

 

Принцип возможных перемещений (краткие сведения из теории) Возможным перемещением механической системы называется совокупность а) бесконечно малых б) мысленных перемещений точек системы, при которых в) не нарушаются связи, наложенные на систему. Возможное перемещение любой точки системы будем изображать элементарным вектором , направленным в сторону перемещения. Число степеней свободы. Число независимых перемещений точек системы называется числом степеней свободы системы. Если система состоит из n точек, на которые наложены k геометрических (не накладывающих ограничений на скорости точек) связей, то она имеет степеней свободы. В дальнейшем связи считаются геометрическими. Следовательно, чтобы задать положение такой системы в любой момент времени, не нужно задавать все координаты всех точек, а надо задать только независимые параметры. Независимые параметры, число которых равно числу степеней свободы, и которые однозначно определяют положение всей системы в любой момент времени, называются обобщенными координатамии обозначаются , ,…, , где s – число степеней свободы. В качестве обобщенных координат можно выбрать декартовы координаты точек, углы поворота тел и т.д.  
Идеальные связи. Связи называются идеальными, если сумма элементарных работ реакций связей, наложенных на систему, равна нулю на любом возможном перемещении системы: . (Элементарная работа на возможном перемещении обозначается ). Все встречавшиеся ранее связи (шарниры, поверхности, нити, подшипники и т.д.) – идеальные при отсутствии трения. Если трение имеется и работа силы трения отлична от нуля, то сила трения включается в число активных сил. Принцип возможных перемещений. Формулировка: для равновесия системы с геометрическими идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех активных сил, действующих на точки системы, на любом возможном перемещении системы из данного положения была равна нулю: , (1) или (с учетом выражений для элементарной работы силы, см. задачу Д4) , а также . (2) В (2) выполнено деление на и поэтому суммируются мощности сил.

Указания. Задача Д4 – на применение условия равновесия механической системы – принципа возможных перемещений. Механизм в рассматриваемой задаче имеет одну степень свободы, т. е. одно независимое возможное перемещение. Для решения задачи нужно сообщить механизму возможное перемещение, вычислить сумму мощностей всех действующих активных сил и пар на этом перемещении и приравнять ее нулю. Все вошедшие в составленное уравнение скорости следует выразить через какую-либо одну из них.

Чтобы найти деформацию пружины , надо из полученного соотношения определить силу упругости F. На чертеже эту силу можно направить в любую сторону (т.е. считать пружину или растянутой, или сжатой); верно ли выбрано направление силы, укажет знак силы.

Последовательность действий при решении задачи см. в примере Д4.

Пример Д4. Механизм (рис. Д4а), расположенный в горизонтальной плоскости, состоит из стержней 1, 2, 3 и ползунов В, D, соединенных друг с другом и с неподвижной опорой О шарнирами. К ползуну В прикреплена пружина с коэффициентом жесткости с, к ползуну D приложена сила , а к стержню 1 (кривошипу) – пара сил с моментом М.

Дано:= 60°, = 0°, = 60°, = 0°, = 120°, l1 = 0,4 м, АЕ = ED, с=125 Н/см, М = 150 H×м, Q = 350 Н.

Определить: деформацию пружины при равновесии механизма.

 

 

а) б)

Рис. Д4

Решение.

 

1. Строим положение механизма в соответствии с заданными углами (рис. Д4б); при этом, согласно указанию к задаче Д4, прикрепляем пружину к ползуну с другой стороны (так, как если бы было ).

Система состоит из стержней 1, 2, 3 и ползунов B, D; система имеет одну степень свободы.

Применим принцип возможных перемещений:

,

или

(1)

(так как в задаче К4 мы уже встречались с определением скоростей точек плоского механизма).

 

2. Покажем на рисунке действующие на точки механизма активные силы: силу , силу упругости пружины (предполагая, что пружина растянута) и пару с моментом М.

Неизвестную силу F найдем с помощью уравнения (1), а зная F и учитывая, что , определим l.

 

3. Сообщим системе возможное перемещение. При этом стержень 1 приобретет угловую скорость w1, ползун B – скорость , ползун D – скорость ; эти скорости потребуются при вычислении слагаемых в (1). Так как система имеет одну степень свободы, то и можно выразить через w1. Ход расчетов такой же, как в задаче К4.

 

4. Кинематическая часть задачи. Все вычисления и построения векторов проводятся для заданного положения механизма (механизм не перемещается в новое положение), так как возможные перемещения – бесконечно малые.

Сначала найдем и изобразим на рисунке скорость точки A (направление вектора скорости определяется направлением угловой скорости ):

Определим и изобразим на рисунке скорость точки D. Скорость – вдоль направляющих ползуна D. По теореме о проекциях скоростей точек абсолютно твердого тела, проекции скоростей и на прямую AD алгебраически равны (имеют одинаковые модули и знаки):

(2)

Чтобы определить скорость точки , найдем сначала скорость точки . Для этого построим мгновенный центр скоростей С2 стержня 2. Он находится на пересечении перпендикуляров к векторам и , восставленных из точек А и D. Покажем направление мгновенного поворота стержня 2 (вокруг С2), учитывая направление или . Так как , то – равносторонний и С2Е в нем высота, поскольку АЕ = ED. Тогда скорость , перпендикулярная С2Е, будет направлена по прямой ЕА (при изображении учитываем направление мгновенного поворота стержня 2).

Воспользовавшись опять теоремой о проекциях скоростей точек E и A на прямую EA, получим

Значение скорости можно найти и другим способом, составив пропорцию

.

Находим , применив еще раз теорему о проекциях скоростей и на прямую BE и учитывая, что параллельна направляющим ползуна B.

(3)

Изображаем на рисунке.

 

5. Составим уравнение (1) для показанных на рисунке сил и скоростей.

Мощность силы : .

Мощность силы : .

Мощность пары сил: , так как элементарная работа пары (см. задачу Д3) , а мощность равна .

В итоге, уравнение (1) принимает вид

.

Заменяя здесь и их значениями (2) и (3) и вынося за скобки, получаем

(4)

Так как равенство (4) выполняется при любой возможной угловой скорости w1, то

(5)

Из уравнения (5) находим значение силы упругости и определяем деформацию пружины .

Ответ: l = 13,5 см. Знак указывает, что пружина, как и предполагалось, растянута.


Задача Д6

(тема: “Принцип Даламбера для механической системы”)

 

Вертикальный вал (рис. Д6.0-Д6.9, табл. Д6), вращается с постоянной угловой скоростью с-1. Вал имеет две опоры: подпятник в точке А и цилиндрический подшипник в точке, указанной в табл. Д6 ( ). К валу жестко прикреплены невесомый стержень 1 длиной м с точечной массой кг на конце и однородный стержень 2 длиной м, имеющий массу кг; оба стержня лежат в одной плоскости. Точки крепления стержней к валу и углы и указаны в таблице. Пренебрегая весом вала, определить реакции подпятника и подшипника. При окончательных подсчетах принять м.

 

Перед выполнением задания прочтите по учебнику тему: «Принцип Даламбера». Ответьте на вопросы:

1. Сформулируйте принцип Даламбера для точки.

2. Как определяется модуль и направление силы инерции для точки? В каких случаях сила инерции равна нулю?

3. Сформулируйте принцип Даламбера для системы.

4. Чему равны главный вектор и главный момент сил инерции системы?

5. Запишите уравнения равновесия произвольной системы сил и плоской системы сил в координатной форме (вспомнив соответствующие уравнения статики).

Принцип Даламбера для точки и системы (краткие сведения из теории) Принцип Даламбера для точки.Рассмотрим дифференциальное уравнение движения точки в инерциальной системе отсчета в векторной форме: , (1) где – векторная сумма всех сил, действующих на точку (активных и реакций связей). Перенесем вектор в правую часть уравнения (1): ; обозначим ; тогда получим уравнение , (2) где ; (3) эта величина называется силой инерции точки. Уравнение (2) по форме соответствует уравнению равновесия сил в векторной форме. В этом и состоит принцип Даламбера для точки: если к приложенным к точке силам добавить силу инерции (3), то полученная система сил (активных, реакций связей и сил инерции) будет уравновешенной и задачу динамики можно решать, применив методы статики. Такой метод решения задач динамики называется методом кинетостатики.

 

Сила инерции точки (см. (3)). Модуль силы инерции точки равен ; направлена сила инерции в сторону, противоположную абсолютному ускорению точки . Поэтому для построения на рисунке следует сначала построить вектор (или его составляющие, например, и ), и затем построить в сторону, противоположную вектору (или и в стороны, противоположные и , соответственно). Принцип Даламбера для системы. Применим описанный выше принцип Даламбера к каждой точке системы. К силам, действующим на каждую точку (внешним и внутренним), добавляется сила инерции (3). Получаем систему сил (внешних, внутренних и сил инерции) для всех точек системы. Принцип Даламбера для системы формулируется следующим образом: если к внешним силам (активным и реакциям связей), действующим на каждую точку системы, добавить силу инерции (3), то полученная система сил будет уравновешенной и для нее справедливы уравнения статики. Уравнения равновесия сил (внешних (активных и реакций связей) и сил инерции) в векторной форме: ; , где ,– главный вектор и главный момент относительно произвольного центра O внешних сил (активных и реакций связей); , – главный вектор и главный момент относительно произвольного центра O сил инерции. В алгебраической (координатной) форме уравнения равновесия записываются различным образом, в зависимости от типа получившейся системы сил (произвольная система сил, плоская система сил и т. д., см. раздел “Статика”). Главный вектор сил инерции не зависит от центра приведения и может быть вычислен заранее: , где M – масса тела (системы), – абсолютное ускорение центра масс тела (системы). Главный вектор не обязательно приложен в центре масс (так как центр приведения – произвольная точка). Главный момент сил инерции относительно центра приведения O: . Главный момент зависит от центра приведения O и заранее может быть вычислен только в некоторых частных случаях (для некоторых видов движения тела и различных центров приведения).

 

Рис. Д6.9
Рис. Д6.8
Рис. Д6.7

 

Таблица Д6

Номер условия Подшипник в точке Крепление a, град. b, град.
стержня 1 в точке стержня 2 в точке
В D K
D B E
E D B
K D E
B E D
D K B
E B K
K E B
D E K
E K D

Указания. Задача Д6 – на применение к изучению движения системы принципа Даламбера. При решении задачи учесть, что система сил инерции точек стержня 2 представляет собой систему параллельных сил, направленных в одну сторону и, следовательно, имеет равнодействующую . Модуль равнодействующей , где ускорение центра масс С стержня. Линия действия силы не проходит через точку С, так как силы инерции образуют линейно распределенную нагрузку (см. пример Д6).

Рис. Д6

Пример Д6. С невесомым валом , вращающимся с постоянной угловой скоростью , жестко скреплен однородный стержень длиной и массой , имеющий на конце груз массой (рис. Д6). Дано: м, м, , м, кг, кг, с-1. Определить: реакции подпятника и подшипника .

Решение. Для определения искомых реакций рассмотрим движение механической системы, состоящейиз вала , стержня и груза, и применим принцип Даламбера. Проведем неподвижныеоси, лежащие в данный момент времени в плоскости, образуемой валом и стержнем, и изобразим действующие на систему внешние силы: силы тяжести , составляющие реакции подпятника и реакцию подшипника (XA, YA, XB надо определить).

Согласно принципу Даламбера, присоединим к этим силам силы инерции точек стержня и груза, считая груз материальной точкой. Так как вал вращается равномерно ( ), то точки стержня имеют только нормальные ускорения направленные к оси вращения; численно , где – расстояние от точки от оси. Тогда силы инерции будут направлены от оси вращения; численно , где mk – масса точки. Поскольку пропорциональны , то эпюра этих параллельных сил образует треугольник и их можно заменить равнодействующей , линия действия которой проходит через центр тяжести этого треугольника (точку пересечения медиан), т.е. на расстоянии H1 от вершины О, где , (см. рис. Д6).

Известно, что равнодействующая любой системы сил равна ее главному вектору; численно главный вектор сил инерции стержня , где – ускорение центра масс стержня. Так как стержень вращается с постоянной угловой скоростью, то ускорение центра масс стержня имеет только нормальную составляющую: . В результате получим

Аналогично для силы инерции груза найдем, что она направлена от оси вращения; численно

Так как все действующие силы и силы инерции лежат в плоскости Aху, то и реакции подпятника А и подшипника В тоже лежат в этой плоскости, что было учтено приих изображении на рисунке.

По принципу Даламбера, приложенные внешние силы и силы инерции образуют уравновешенную систему сил. Составляя для этой плоской системы сил три уравнения равновесия, получим:

(1)

(2)

(3)

Подставив сюда числовые значения всех заданных и вычисленных величин и решив эту систему уравнений, найдем искомые реакции (в своей задаче решение уравнений равновесия должно быть выполнено подробно).

 

Ответ: XA = -11,8 Н, YA = 49,1 Н, XB = -19,7 Н.

Знаки указывают, что силы и направлены противоположно показанным на рис. Д6.