Схема построения экспонирующего устройства
В экспонирующем устройстве реализуется одна из трех схем:
с размещением формной пластины на внутренней поверхности цилиндра;
с размещением формной пластины на внешней поверхности цилиндра;
с размещением формной пластины на плоскости.
Устройство CtP с размещением формной пластины на внутренней поверхности цилиндра Heidelberg Prosetter
Схема с размещением пластины на внутренней поверхности цилиндра используется в системах CtP с фиолетовыми и красными полупроводниковыми, газовыми, а также твердотельными лазерами. Во время экспонирования пластина неподвижна, а развертка изображения осуществляется за счет вращения и осевого перемещения дефлектора.Основные достоинства схемы с размещением пластины на внутренней поверхности цилиндра — возможность бесступенчатого изменения формата пластины (в пределах максимального формата устройства) и высокая скорость записи. Недостатки — сложность реализации многолучевой записи а также большая величина расстояния от источника излучения до поверхности пластины, что повышает вероятность появления помех, например в результате накопления пыли на оптике.
В устройствах с размещением формной пластины на внешней поверхности цилиндра развертка изображения осуществляется за счет вращения цилиндра и перемещения записывающей головки вдоль его образующей. Подобная схема удобна для реализации многолучевой записи, поэтому она нашла широкое применение в системах CtP с полупроводниковыми ИК-лазерами . Ее основным недостатком является сложность механизма крепления пластин на цилиндре.
В устройствах с плоскостной схемой построения экспонирующей системы пластины фиксируются на плоском столе при помощи вакуума. Важными достоинствами плоскостной схемы являются возможности бесступенчатого изменения формата пластины (в пределах максимального формата устройства), экспонирования пластин различной толщины, а также установки планок различных систем штифтовой приводки.
Плоскостная схема имеет две разновидности: с размещением пластины на подвижном и на неподвижном столе. В первом случае развертка изображения на одной координате осуществляется за счет перемещения стола, а по другой — дефлектором. Такая схема отличается высокой скоростью записи, поэтому она используется в устройствах CtP для газетного производства. К ее недостаткам относится ограничение максимального формата записи из-за искажения формы точки по мере удаления луча от центра пластины. Во втором случае пластина неподвижно закреплена на столе, а развертка изображения по обеим координатам осуществляется благодаря перемещению записывающей головки.Недостатком этой схемы является низкая скорость записи.
1. Сканирующие устройства: назначения, характеристики, области применения.
Разрешение. Разрешение - величина, характеризующая количество считываемых элементов на единицу длины. Чаще всего размерность этой величины указывают в точках на дюйм или точках на сантиметр.
Различают оптическое и интерполяционное разрешение. Строго говоря, оптическое разрешение - это количество ПЗС- элементов (ПЗС – приборы с зарядной связью), задействованных при сканировании оригинала, приходящееся на единицу длины. Интерполяционное разрешение создается введением дополнительных, математически рассчитанных элементов изображения в определенном радиусе между двумя соседними элементами, полученными путем считывания изображения ПЗС-элементами.
Большое разрешение, достигаемое в профессиональных сканерах, обеспечивает возможность больших увеличений.
Используемые в системах сканирования интерполяционные возможности позволяют снизить эффекты малого разрешения, однако объем обрабатываемой информации резко увеличится, а новые элементы изображения не появятся.
Выбор разрешения - одна из наиболее важных задач на стадии оцифровки изображения. При полиграфическом воспроизведении изображения линиатуру полиграфического растра принимают в качестве исходного параметра разрешения сканирования. При сканировании с разрешением, близким к линиатуре, могут возникать искажения изображения, особенно заметные, если на изображении есть резкая граница между цветовыми оттенками, расположенными под углом, близким к углу наклона растра одного из цветов.
Существует математическая зависимость разрешающей способности Res в точках на дюйм (dpi), с учетом которой необходимо сканировать оригинал для получения заданного качества:
Res=Lin*К*М,
где Lin - линиатура полиграфического растра, с которым будет производиться дальнейшая печать (lpi); М - масштаб увеличения изображения; К - так называемый коэффициент качества, лежащий в пределах от 1,5 до 2.
Верхняя теоретическая граница 2 была предложена еще в 1928 г. инженером американской компании AT&T Г.Найквистом, и в самом общем виде ее обоснование формулируется следующим образом: для того чтобы результат измерений был лишен искажений, число замеров должно, по меньшей мере, вдвое превышать число деталей.
Механизм сканирования оригиналов. Устройство сканера во многом определяется применяемым ФЭП (фотоэлектронные преобразователи). В связи с этим принято различать считывание информации по плоскости и по поверхности цилиндра, а сканеры соответственно плоскостные и цилиндрические (барабанные).
Сканирующее устройство для считывания информации в плоскостных сканерах представляет собой линейную матрицу элементов, рассчитанных таким образом, чтобы на нее проецировалось изображение шириной, равной ширине сканируемой области.
Считывание информации может происходить как за один
цикл засветки оригинала - однопроходная технология, так и за
несколько (обычно за три) - многопроходная технология.
Можно выделить четыре схемы засветки, применяемые в современных сканерах:
Специальная головка, в которой расположены три источника света за тремя светофильтрами (красным, зеленым и синим) и ПЗС-матрица с оптической системой, перемещается вдоль сканируемого образца микрошаговым двигателем (в черно- белом сканере одна лампа). При однопроходной технологии на каждом шаге головка фиксируется, и лампы, попеременно зажигаясь, засвечивают ПЗС-матрицу, отображающую цветовой профиль того цвета, лампа которого в данный момент включена. При наблюдении такое сканирование выглядит непрерывным, так как быстродействие ПЗС-элементов составляет доли миллисекунд. Если технология многопроходная (обычно три прохода), то на каждом проходе снимается информация только одного цвета.
Световой поток от источника со стабильным спектром излучения. близким к дневному свету (как правило, специальная люминесцентная лампа с цветовой температурой 5000 или 5500 К), проходит через размещенный на прозрачной поверхности (обычно на стекле) оригинал и диафрагму в виде узкой щели, параллельной источнику света. Диафрагма позволяет ограничить размер элемента изображения, считываемый каждым элементом ПЗС-линейки. При сканировании в отраженном свете оригинал освещается «снизу», а специальная ширма препятствует попаданию прямого света от источника в оптический тракт.
«Полоса» света, прошедшая через диафрагму, фокусируется объективом и пропускается через систему полупрозрачных зеркал, распределяющих световой поток на три части, приблизительно равные по интенсивности. Каждый из трех световых пучков пропускается через один из трех светофильтров, соответствующих трем составляющим в аддитивной модели цветового синтеза (красный, синий, зеленый).
В некоторых случаях вместо зеркал используют специальные призмы, обеспечивающие разделение светового потока на три части, а в отдельных моделях эти призмы реализуют и функции светофильтров, направляя разные части видимого спектра в разные стороны.
Пучок света, прошедший через фильтр, попадает на линейку с зарядовой связью, расположенную в фокальной плоскости объектива. Таким образом, в каждый момент времени для считывания доступна информация об одной «строке» изображения. Перемещение оригинала относительно тракта «источник света - ПЗС-линейка» обеспечивает второе направление развертки изображения.
Принципиально необходимым для правильной работы планшетного сканера является параллельность источника света, оригинала. диафрагмы и ПЗС-линейки. Кроме того, все три ПЗС-линейки должны одновременно попадать в фокальную плоскость.
Вместо трех ПЗС-линеек используется одна, а светофильтры перед ней меняются специальным механизмом. Естественно, изображение вместо одного прохода считывается за три. Применение ПЗС-элементов определяет оптоэлектрические параметры устройства: число распознаваемых оттенков, распознаваемый диапазон оптических плотностей оригиналов и оптическую разрешающую способность.
Показатели качества таких сканеров в большой степени зависят от механических характеристик устройства. Существенное влияние оказывают точность шага и параллельность перемещения сканирующей головки.
ФЭУ традиционно используются в барабанных сканерах. В качестве источника излучения обычно применяются галогенные лампы мощностью 45-60 Вт. Если сканируется прозрачный оригинал, то внутрь барабана помещают источник света с фокусирующей оптической системой; фокус лежит в плоскости оригинала. Если оригинал непрозрачный, источник света находится снаружи. Свет, прошедший (или отраженный) через оригинал, попадает на приемное окно ФЭУ.
Считывание информации по окружности происходит за счет вращения барабана, а вдоль направляющей цилиндра - благодаря специальному ходовому винту. За один элементарный шаг сканирования считывается только одна точка изображения (в сканерах на основе ПЗС - целая строка), размер которой определяется параметрами оптической системы и может быть меньше 1 мкм (чем и определяется оптическое разрешение). Так как вращение можно синхронизировать с очень высокой точностью, а прецизионный ходовой винт обеспечивает погрешности порядка долей микрометра, точность работы таких сканеров значительно выше, чем плоскостных.
При вращающемся барабане невозможно зафиксировать точку сканирования, поэтому для цветного сканирования либо применяется трехпроходная технология, либо используются три ФЭУ с разными спектрами чувствительности (при аддитивном цветовом синтезе).
Поскольку именно апертура в барабанном сканере определяет размер элемента изображения, каждому разрешению сканирования в идеальном случае должна соответствовать своя апертура. Если апертура слишком велика, соседние элементы перекрываются, что ведет к снижению резкости изображения; при малой же апертуре между соседними элементами образуется зазор, что приводит к потере части информации при считывании и одновременно увеличивает шумовую составляющую.
В современных барабанных сканерах количество апертур сканирования ограничено. Если необходимо сканировать с разрешением. для которого нет точно соответствующей ему апертуры, выбирается ближайшая меньшая, при этом количество диафрагм составляет 8-12 вариантов для каждого режима сканирования (отдельно для проходящего и отраженного света).
Для сканирования с различным разрешением большинство барабанных сканеров имеют возможность увеличивать или уменьшать частоту вращения барабана. При этом соответственно изменяется и шаг перемещения считывающей системы.
Преобразование аналогового сигнала в цифровой. В основе любой сканирующей системы лежат аналоговые элементы, воспринимающие бесконечно много уровней входного сигнала. Заключительным этапом обеспечиваемых сканером преобразований является получение информации об изображении, которое передается в ЭВМ в цифровой форме. При этом сигнал преобразуется из аналоговой формы в цифровую.
Аналоговый сигнал может принимать произвольные значения из диапазона допустимых значений - иначе говоря, аналоговый сигнал непрерывен по множеству значений, которые он принимает. Сигнал, преобразованный в цифровой эквивалент, является дискретным по множеству принимаемых значений. Для 8-разрядного преобразования таких значений всего 256 (28), для 12-разрядного-4096 (212), для 16-разрядного-65536 (216). Во всех случаях преобразование аналогового сигнала в цифровую форму дает ошибку округления, составляющую иногда половину веса младшего разряда, названную шумами квантования. Поэтому очень важным параметром всех без исключения сканеров является количество информации, приходящееся на один цвет.
В настольные издательские системы этот параметр вошел под названием глубины цвета и представляет собой максимальное
количество оттенков трех основных цветов аддитивного синтеза. Чем больше глубина цвета (или бит информации), тем более приближенный к оригиналу цвет получится на изображении. Современные профессиональные сканеры работают с глубиной 10, 12, 14 и 16 бит/цвет, т.е. при 16-битном представлении цвета изображение содержит 65536 оттенков одного из основных цветов RGB.
Основные стадии сканирования. Любую процедуру считывания информации с изображения для последующей обработки можно укрупненно разбить на шесть стадий:
· считывание информации с оригинала и преобразование ее в электрический сигнал, пропорциональный световому потоку, модулированному считываемым изображением;
· аппаратная компенсация индивидуальных особенностей считывающих элементов;
· коррекция динамического диапазона, обеспечивающая максимально полное использование разрядности сканера или программного обеспечения;
· преобразование информации о световом потоке в информацию об оптической плотности;
· преобразование информации об изображении в какую-либо доступную цветовую модель (RGB, CMYK, CIELab) или в полутоновую (при сканировании черно-белых оригиналов и т.д.);
· цветокоррекция изображения с учетом индивидуальных особенностей оригинала и печатного процесса (градационная, локальная, глобальная и т.д.), а также другие виды коррекции.
В некоторых моделях сканеров имеется дополнительный четвертый канал считывания информации для так называемого «нерезкого маскирования». Этот процесс осуществляется с использованием большей апертуры сканирования, при этом вычисляется сигнал нерезкого маскирования аналоговыми методами и на основании информации, непосредственно считываемой. с изображения, получается изображение с меньшим уровнем шумов, чем при аналогичной коррекции резкости цифровыми методами.
При сканировании некоторых оригиналов, особенно отпечатанных полиграфическим способом, необходимо удалить растровую структуру. Это достигается путем сканирования с расфокусировкой оптической системы - дерастрированием (в английском варианте - descreening). Процесс дерастрирования обычно осуществляется в автоматическом режиме путем задания оператором значения линиатуры отпечатанного изображения.
Диапазон чувствительности сканера (в идеале) должен перекрывать динамический диапазон оригинала, чтобы обеспечить распознавание деталей в светах и в тенях изображения. Это особенно важно при сканировании в проходящем свете, где плотности оригинала достигают значений D=3,8-4,2, в то время как для непрозрачных оригиналов оптическая плотность не превышает D=2-2,5.
Современные сканеры, использующие в качестве светоприемников ПЗС-элементы, имеют несколько меньший диапазон распознаваемых оптических плотностей, чем сканеры с ФЭУ. Обычно он составляет от 0,3 до 3,9 и от 0,3 до 4,2 соответственно.
Работа с цветовыми пространствами. Различные фирмы- производители для работы на сканерах используют различные цветовые пространства. Тем не менее основными признаны RGB, CMYK, CIELab. Первые два пространства являются аппаратно-зависимыми, а последнее - математически рассчитанное и лишенное привязки к какому-либо типу оборудования.
советом фирмыPrepress основывается на использовании CIELab в качестве внутреннего пространства, которое при необходимости пересчитывается в другие пространства работающих устройств.