Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости
Если две прямые лежат в одной плоскости, угол между ними легко измерить — например, с помощью транспортира. А как измерить угол между прямой и плоскостью?
Пусть прямая пересекает плоскость, причем не под прямым, а под каким-то другим углом. Такая прямая называется наклонной.
Опустим перпендикуляр из какой-либо точки наклонной на нашу плоскость. Соединим основание перпендикуляра с точкой пересечения наклонной и плоскости. Мы получили проекцию наклонной на плоскость.

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на данную плоскость.
Обратите внимание — в качестве угла между прямой и плоскостью мы выбираем острый угол.
Если прямая параллельна плоскости, значит, угол между прямой и плоскостью равен нулю.
Если прямая перпендикулярна плоскости, ее проекцией на плоскость окажется точка. Очевидно, в этом случае угол между прямой и плоскостью равен 90°.
Прямая перпендикулярна плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
Это определение. Но как же с ним работать? Как проверить, что данная прямая перпендикулярна всем прямым, лежащим в плоскости? Ведь их там бесконечно много.
На практике применяется признак перпендикулярности прямой и плоскости:
Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90o.
   рис. 37
  |   Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися. Лемма. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой. Определение. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в плоскости. Говорят также, что плоскость   перпендикулярна к прямой а.
  |  
   рис. 38
  |   Если прямая а перпендикулярна к плоскости   , то она, очевидно, пересекает эту плоскость. В самом деле, если бы прямая а не пересекала плоскость   , то она лежала бы в этой плоскости или была бы параллельна ей. Но в том и в другом случае в плоскости   имелись бы прямые, не перпендикулярные к прямой а, например прямые, параллельные ей, что невозможно. Значит, прямая а пересекает плоскость   .
  |  
Связь между параллельностью прямых и их перпендикулярностью к плоскости.
   рис. 39
  |  1. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. 2. Если две прямые перпендикулярны к плоскости, то они параллельны. | 
 рис. 37
 
 перпендикулярна к прямой а.
 
 рис. 38
 
 рис. 39