Выражение логических связок в естественном языке.
В мышлении мы оперируем не только простыми, но и сложными суждениями, образуемыми из простых посредством логических связок (или операций) — конъюнкции, дизъюнкции, импликации, эквиваленции, отрицания, которые также называются логическими константами, или логическими постоянными. Проанализируем, каким образом перечисленные логические связки выражаются в естественном (русском) языке.
Конъюнкция (знак «л») выражается союзами «и», «а», «но», «да», «хотя», «который», «зато», «однако», «не только..., но и» и др. В логике высказываний знак « л » соединяет простые высказывания, образуя из них сложные. В естественном языке союз «и» и другие слова, соответствующие конъюнкции, могут соединять существительные, глаголы, наречия, прилагательные и другие части речи. Например, «В корзине у деда лежали подберезовики и маслята» (aÙb), «Интересная и красиво оформленная книга лежит на столе». Последнее высказывание нельзя разбить на два простых, соединенных конъюнкцией: «Интересная книга лежит на толе» и «Красиво оформленная книга лежит на столе», — так как создается впечатление, что на столе лежат две книги, а не одна.
В логике высказываний действует закон коммутативности конъюнкции (aÙb)º(bÙa). В естественном русском языке такого закона нет, так как действует фактор времени. Там, где учитывается последовательность во времени, употребление союза «и» некоммутативно. Поэтому не будут эквивалентными, например, такие два высказывания: 1) «Прицепили паровоз, и поезд тронулся» и 2) «Поезд тронулся, и прицепили паровоз».
В естественном языке конъюнкция может быть выражена не только словами, но и знаками препинания: запятой, точкой с запятой, тире. Например, «Сверкнула молния, загремел гром, пошел дождь».
О выражении конъюнкции средствами естественного языка пишет С. Клини в своей книге «Математическая логика». В разделе «Анализ рассуждений» он приводит (не исчерпывающий) список выражений естественного языка, которые могут быть заменены символами « Л » или «&». Формула А ^ В в естественном языке может выражаться так:
«Не только А, но и В. Как А, так и В.
В, хотя и Л. А вместе с В.
В, несмотря на А. А, в то время как В» 7.
Придумать примеры всех этих структур предоставляем читателю.
В естественном (русском) языке дизъюнкция (обозначенная aÚb и aÚb) выражается союзами: «или», «либо», «то ли... то ли» и др. Например, «Вечером я пойду в кино или в библиотеку»; «Это животное принадлежит либо к позвоночным, либо к беспозвоночным»; «Доклад будет то ли по произведениям Л. Н. Толстого, то ли по произведениям Ф. М. Достоевского».
Для обоих видов дизъюнкции действует закон коммутативности: (aÚbº(bÚa) и (aÚb)º(bÚa). В естественном языке эта эквивалентность сохраняется. Например, суждение «Я куплю масло или хлеб» эквивалентно суждению «Я куплю хлеб или масло». С. Клини показывает, какими разнообразными способами могут быть выражены в естественном языке импликация (AÊB) и эквиваленция (A~B).
(Буквами А и В обозначены переменные высказывания.)
Закон тождества.
Закон тождества.
Этот закон формулируется так: «В процессе определенного рассуждения всякое понятие и суждение должны быть тожественными самим себе».
В математической логике закон тождества выражается следующими формулами:
A=A (равно это три параллельные линии)
Тождество есть равенство, сходство предметов в каком-либо отношении.Например, все жидкости тождественны в том, что они теплопроводны, упруги. Каждый предмет тождественен самому себе.Но реально тождество существует в связи с различием.Нет и не может быть двух абсолютно тождественных вещей(двух листочков дерева).Вещь вчера и сегодня и тождественна,и различна.
Отождествление(или идентификация) широко используется в следственной практике, например, при опознании предметов, людей, отпечатков пальцев0
14. Закон непротиворечия.
Закон непротиворечия (закон противоречия) — закон логики, который гласит, что два несовместимых (противоречащих либо противоположных) суждения не могут быть одновременно истинными. По крайней мере одно из них необходимо ложно.[1]
Математическая запись
где — знак конъюнкции, — знак отрицания.
Закон противоречия является фундаментальным логическим законом, на котором построена вся современная математика. Он является тавтологией классической логики, а также большинства неклассических логик, в том числе интуиционистской логики. Все же, существуют нетривиальные логические системы, в которых он не соблюдается, например логика Клини.Закон противоречия говорит о том, что если одно суждение что-то утверждает, а другое то же самое отрицает об одном и том же объекте, в одно и то же время и в одном и том же отношении, то они не могут быть одновременно истинными. Например, два суждения: «Сократ высокий», «Сократ низкий» (одно из них нечто утверждает, а другое то же самое отрицает, ведь высокий — это не низкий, и наоборот), — не могут быть одновременно истинными, если речь идет об одном и том же Сократе, в одно и то же время его жизни и в одном и том же отношении, то есть если Сократ по росту сравнивается не с разными людьми одновременно, а с одним человеком. Понятно, что когда речь идет о двух разных Сократах или об одном Сократе, но в разное время его жизни, например в 10 лет и в 20 лет, или один и тот же Сократ и в одно и то же время его жизни рассматривается в разных отношениях, например он сравнивается одновременно с высоким Платоном и низким Аристотелем, тогда два противоположных суждения вполне могут быть одновременно истинными, и закон противоречия при этом не нарушается. Символически он выражается следующей тождественно-истинной формулой: (а а), (читается: «Неверно, что а и не а»), где а — это какое-либо высказывание.