Классификация точек разрыва функции
Все точки разрыва функции разделяются на точки разрыва первого и второго рода.
Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке
Существуют левосторонний предел и правосторонний предел
;
Эти односторонние пределы конечны.
При этом возможно следующие два случая:
Левосторонний предел и правосторонний предел равны друг другу:
Такая точка называется точкой устранимого разрыва.
Левосторонний предел и правосторонний предел не равны друг другу:
Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов называется скачком функции . Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности.
пример
Данная функция не определена в точках x = 1 и x = 1. Следовательно, функция имеет разрывы в точках x = ±1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках. Поскольку левосторонний предел при x = 1 равен бесконечности, то данная точка является точкой разрыва второго рода.
Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода.
39 Производной функции у = f{x) в точке x0 называется предел отношения приращения этой функции к приращению аргумента, когда последнее стремится к нулю. Производную функции у = f{x) в точке х0 в контрольных по математике и учебниках обозначают символом f'(x0). Следовательно, по определению
Производная функции y = f(х) при х = xо равна угловому коэффициенту касательной к графику данной функции в точке Мо(хо, f(xо)), т. е.
где а — угол наклона касательной к оси Ох прямоугольной декартовой системы координат.
Уравнение касательной к линии у = f(x) в точке Мо(хо, уо ) принимает вид Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f(x0) не равно 0, то уравнение нормали к линии у = f(x) в точке Мо(хо, уо) запишется так:
47 Пусть производная некоторой функции f дифференцируема. Тогда производная от производной этой функции называется второй производной функции f и обозначается f". Таким образом,
f"(x) = (f'(x))'.
Если дифференцируема (n - 1)-я производная функции f, то ее n-й производной называется производная от (n - 1)-й производной функции f и обозначается f(n). Итак,
f(n)(x) = (f(n-1)(x))', n N, f(0)(x) = f(x).
Число n называется порядком производной.
Дифференциалом n-го порядка функции f называется дифференциал от дифференциала (n - 1)-го порядка этой же функции. Таким образом,
dnf(x) = d(dn-1 f(x)), d0f(x) = f(x), n N.
Если x - независимая переменная, то
dx = const и d2x = d3x = ... = dnx = 0.
В этом случае справедлива формула
dnf(x) = f(n)(x)(dx)n.
48дифференциал. Геометрический смысл.
Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение x, тогда функция получит приращение y = NM1. Значениям x+x и y+y на кривой y = f(x) будет соответствовать точка
M1(x+x; y+y).
Из MNT находим NT=MN·tg . Т.к. tg = f '(x), а MN = x, то NT = f '(x)·x. Но по определению дифференциала dy=f '(x)·x, поэтому dy = NT.
Таким образом, дифференциал функции f(x), соответствующей данным значениям x и x, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.
50Правило Лопиталя представляет собой метод вычисления пределов, имеющих неопределенность
типа или
.
Пусть a является некоторым конечным действительным числом или равно бесконечности.
Если и
, то
;
Если и
, то аналогично
59 Комплексныечисла— расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y — вещественные числа, i — мнимая единица.
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.