Тема 13. Cлучайные величины
99.Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать.
Биноминальный закон распределения описывает случайные величины, значения которых определяют количество «успехов» и «неудач» при повторении опыта N раз. В каждом опыте «успех» может наступить с вероятностью p, «неудача» — с вероятностью q=1-p. Закон распределения в этом случае определяется формулой Бернулли:
Функция распределения в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Пусть дано вероятностное пространство , и на нём определена случайная величина
с распределением
. Тогда функцией распределения случайной величины
называется функция
, задаваемая формулой:
.
· непрерывна справа:
· не убывает на всей числовой прямой.
·
· Распределение случайной величины однозначно определяет функцию распределения.
· Верно и обратное: если функция удовлетворяет четырём перечисленным выше свойствам, то существует вероятностное пространство и определённая на нём случайная величина, такая что
является её функцией распределения.
· По определению непрерывности справа, функция имеет правый предел
в любой точке
, и он совпадает со значением функции
в этой точке.
· В силу неубывания, функция также имеет и левый предел
в любой точке
, который может не совпадать со значением функции. Таким образом, функция
либо непрерывна в точке, либо имеет в ней разрыв первого рода.
100. Случайная величина называется дискретной, если ее множество значений счетно.
1). Индикатор события I. Эта случайная величина имеет закон распределения : Если вероятность появления события в некотором опыте равна p, то I принимает значение 1, если событие произошло, и значение 0, если событие не произошло. I можно назвать числом появлений события в одном опыте.
2). Биномиальный закон распределения. Случайная величина может принимать значения 0,1,2,…,n и каждому значению X=m соответствует вероятность , где p+q=1. Этот закон распределения считается заданным, если известны числа n и p, через которые выражаются все вероятности. Случайную величину подчинённою этому закону можно назвать числом появлении события в n независимых опытах.
З). Пуассоновский закон распределения. Случайная велbчина имеет возможные значения 0,1,2,3,…… и каждому значению Х=m соответствует вероятность ,где
- некоторый параметр, вероятностный смысл которого будет указан несколько страниц спустя.
4). Гипергеометрический закон распределения. Возможные значения X: 0,1,…,n. И каждому значению X=m соответствует вероятность P(X=m)=P =
.
Эта случайная величина, например, равна числу m бракованных изделий среди n взятых наугад из партии объёма N, содержащей M бракованных изделий.
5). Геометрический закон распределения
Если, например, p – вероятность изготовления бракованной детали, то случайная величина X с этим законом распределения будет равна общему числу деталей до момента изготовления первой бракованной детали.
Построение ряда распределения удобно лишь для дискретных случайных величин, так как можно перечислить их все возможные значения.
101. Математическое ожидание дискретной случайной величины есть сумма произведений всех её возможных значений на их вероятности:
M(X) = x1p1 + x2p2 + ... + xnpn
Свойства математического ожидания.
1) Математическое ожидание постоянной величины равно самой величине:
М(С) = С
2) Постоянный множитель можно выносить за знак математического ожидания:
М(СХ) = С·М(Х)
3) Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:
М(Х1 + Х2 + …+ Хn) = М(Х1) + М(Х2) + ... + М(Хn)
4) Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей:
М(Х1 · Х2 · ... · Хn) = М(Х1) · М(Х2) · ... · М(Хn)
Дисперсия дискретной случайной величины есть математическое ожидание квадрата отклонения случайной величины от её математического ожидания:
D(X) = (x1 - M(X))2p1 + (x2 - M(X))2p2 + ... + (xn- M(X))2pn = x21p1 + x22p2 + ... + x2npn - [M(X)]2
Свойства дисперсии.
1) Дисперсия постоянной величины равна нулю: D(С) = 0
2) Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат: D(СХ) = С2 · D(Х)
3) Дисперсия суммы (разности) независимых случайных величин равна сумме дисперсий слагаемых: D(Х1 ± Х2 ± ... ± Хn) = D(Х1) + D(Х2) + ... + D(Хn)
Среднее квадратическое отклонение дискретной случайной величины, оно же стандартное отклонение или среднее квадратичное отклонение есть корень квадратный из дисперсии:
(X) = D(X)
102. Биномиальное распределение — дискретное распределение вероятностей случайной величины принимающей целочисленные значения
с вероятностями:
Данное распределение характеризуется двумя параметрами: целым числом называемым числом испытаний, и вещественным числом
называемом вероятностью успеха в одном испытании. Биномиальное распределение — одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из
независимых испытаний, в каждом из которых может произойти "успех" с вероятностью
то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы независимых слагаемых, имеющих распределение Бернулли.
103.Распределение Пуассона — вероятностное распределение дискретного типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.
Выберем фиксированное число и определим дискретное распределение, задаваемое следующей функцией вероятности:
,где
· обозначает факториал числа
,
· е — основание натурального логарифма.
Тот факт, что случайная величина имеет распределение Пуассона с параметром
, записывается:
.
104. непрерывные случайные величины невозможно задать в виде таблицы ее закона распределения поскольку невозможно перечислить и выписать в определенной последовательностей все ее значения. Одним из возможных способов задания непрерывной случайной величины является использование функции распределения.
Функцией распределения называют функцию , определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е. F(x)=P(X<x)
Свойства функции распределения:
1. Значения функции распределения принадлежит отрезку [0;1]: 0 F(x)
1
2. F(x) - неубывающая функция, т.е. F(x2) F(x1), если x2>x1
105.Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл
Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.
Средним квадратичным отклонениемназывается квадратный корень из дисперсии
МодойМ0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.
Медианой MD случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.
Начальным моментомпорядка k случайной величины Х называется математическое ожидание величины Хk.
Центральным моментомпорядка k случайной величины Х называется математическое ожидание величины
Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии.
Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.
Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.
106. Говорят, что случайная величина имеет равномерноераспределение на отрезке [a,b], если она непрерывна, принимает значения только на отрезке [a,b], а плотность ее распределения постоянна на отрезке [a,b], и равна 0 вне этого отрезка.
Непрерывное равномерное распределение — в теории вероятностей распределение, характеризующееся тем, что вероятность любого интервала зависит только от его длины.
Говорят, что случайная величина имеет непрерывное равномерное распределение на отрезке , где , если её плотность
имеет вид:
107.Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события…Случайная величина имеет экспоненциальное распределение с параметром
, если её плотность имеет вид
.
108. При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм. Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:
Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:
Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.
Тема 14:
110. Выборочный метод - статистический метод исследования общих свойств совокупности каких-либо объектов на основе изучения свойств лишь части этих объектов, взятых на выборку. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.
Первая задача математической статистики—указать способы сбора и группировки статистических сведений, полученных в результате наблюдений или в результате специально поставленных экспериментов.
Вторая задача математической статистики—разработать методы анализа статистических данных в зависимости от целей исследования. Сюда относятся:
а) оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.;
б) проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого известен.
Современная математическая статистика разрабатывает способы определения числа необходимых испытаний до начала исследования (планирование эксперимента), в ходе исследования (последовательный анализ) и решает многие другие задачи. Современную математическую статистику определяют как науку о принятии решений в условиях неопределенности.
Итак, задача математической статистики состоит в создании методов сбора и обработки статистических данных для получения научных и практических выводов.
111. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины Х , является выборкой, а гипотетически существующая (домысливаемая) — генеральной совокупностью. Генеральная совокупность может быть конечной (число наблюдений N = const) или бесконечной (N = ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда n наблюдений. Число наблюдений n , образующих выборку, называется объемом выборки. Если объем выборки n достаточно велик (n ) выборка считается большой, в противном случае она называется выборкой ограниченного объема. Выборка считается малой, если при измерении одномерной случайной величины X объем выборки не превышает 30 (n <= 30), а при измерении одновременно нескольких (k) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10). Выборка образует вариационный ряд, если ее члены являются порядковыми статистиками, т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами.
Повторнойназывают выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.
Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.
В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно: каждый объект выборки отобран случайно из генеральной совокупности, если все объекты имеют одинаковую вероятность попасть в выборку.
112. Значение случайной величины, соответствующее отдельной группе сгруппированного ряда наблюдаемых данных, называется вариантом, а изменение этого значения варьированием.
Для каждой группы сгруппированного ряда данных можно подсчитать их численность, т.е. определить число, которое показывает, сколько раз встречается соответствующий вариант в ряде наблюдений. Такие числа называют частотой варианта.
Численность отдельной группы сгруппированного ряда наблюдаемых данных называется частотой или весом соответствующего варианта и обозначается тi , где i—индекс варианта.
В ряде случаев представляет практический интерес относительная частота того или иного варианта, называемая частостью.
Отношение частоты данного варианта к общей сумме частот всех вариантов называется частостью или долей этого варианта и обозначается рi , где i—индекс варианта, т.е.
Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов хi с соответствующими им частотами или частностями
113. Непрерывный признак X(xi), iÎ[1,n] может принимать любые значения в некотором числовом интервале, отличаясь один от другого на сколь угодно малую величину. Количество возможных значений непрерывного признака бесконечно. Значения непрерывного признака задаются интервалами, которые характеризуются интервальной частотой m.
Относительная частота wj попадания значения непрерывного признака в заданный интервал определяется как отношение соответствующей частоты mj к общему количеству наблюдений n по следующей формуле:
где mj – частота интервала . Интервальным вариационным рядом называется упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины.
114. Полигон используется для дискретных вариационных рядов.
Для построения полигона распределения по оси абсцисс (X) откладываем количественные значения варьирующего признака — варианты, а по оси ординат — частоты или частости.
Интервальные ряды распределения изображают графически в виде гистограммы, кумуляты или огивы.
Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).
115. Пусть известно статистическое распределение частот количественного признака X. Введем обозначения:
mx- число наблюдений, при которых наблюдалось значение признака, меньшее х; п- общее число наблюдений (объем выборки). Ясно, что относительная частота события Х < х равна. mx/n. Если х изменяется, то изменяется и относительная частота, т. е. относительная частота есть функция от х. Так как эта функция находится эмпирическим (опытным) путем, то ее называют эмпирической.
Эмпирической функцией распределения (функцией распределения выборки) называют функцию определяющую для каждого значения х относительную частоту события Х < х, т.е.
Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.
Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат — накопленные частоты или частости
При построении кумуляты накопленная частота (частость) соответствующего интервала присваивается его верхней границе:
116.
Числовые характеристики статистического распределения: выборочное среднее, оценки дисперсии, оценки моды и медианы, оценки начальных и центральных моментов. Статистическое описание и вычисление оценок параметров двумерного случайного вектора.
Одна из задач математической статистики: по имеющейся выборке оценить значения числовых характеристик исследуемой случайной величины.
Определение 16.1. Выборочным средним называется среднее арифметическое значений случайной величины, принимаемых в выборке:
117. Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра. При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования. Точечные оценки могут быть состоятельными, несмещенными и эффективными. Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики. Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике. Наиболее эффективной считают ту из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Требование несмещенности на практике не всегда целесообразно, так как оценка с небольшим смещением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не всегда удается удовлетворить одновременно все три этих требования, однако выбору оценки должен предшествовать ее критический анализ со всех перечисленных точек зрения
118. В математической статистике показывается, что состоятельной оценкой генерального среднего значения , является выборочное среднее арифметическое
, а состоятельной оценкой генеральной дисперсии
— выборочная дисперсия
Выборочное среднее арифметическое является несмещенной оценкой генерального среднего
.
Несмещенной оценкой генеральной дисперсии является исправленная выборочная дисперсия, вычисляемая по формуле:
для несгруппированных данных,
для сгруппированных данных,
Полученные по выборке оценки и S2 — случайные величины, так как случайны сами выборочные значения. Поэтому можно говорить о математическом ожидании и дисперсии оценок
и S2. Эффективность этих оценок означает, что их дисперсии D(
) и D(S2) меньше дисперсий любых других несмещенных оценок среднего значения и дисперсии генеральной совокупности.
Для исправления выборочной дисперсии достаточно умножить ее на дробь
получим исправленную дисперсию S2. Исправленная дисперсия является несмещенной оценкой.
Тема16:
125.Две случайные величины могут быть связаны функциональной зависимостью, либо зависимостью другого рода, называемой статистической, либо быть независимыми. В естественных науках часто речь идет о функциональной зависимости (связи), когда каждому значению одной переменной соответствует вполне определенное значение другой. Функциональная зависимость может иметь место как между детерминированными (неслучайными) переменными (например, зависимость скорости падения в вакууме от времени и т.п.), так и между случайными величинами (например, зависимость стоимости проданных изделий от их числа и т.п.).
Строгая функциональная зависимость реализуется редко, так как обе величины или одна из них подвержены еще действию случайных факторов, причем среди них могут быть и общие для обеих величин (под «общими» здесь подразумеваются такие факторы, которые воздействуют и на К и на X). В этом случае возникает статистическая зависимость. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой. В частности, статистическая зависимость проявляется в том, что при изменении одной из величин изменяется среднее значение другой; в этом случае статистическую зависимость называют корреляционной.
126. Условным математическим ожиданием дискретной случайной величины Y при X = x (х – определенное возможное значение Х) называется произведение всех возможных значений Y на их условные вероятности.
Если Х и У являются независимыми случайными величинами, то М(ХУ) =М(Х)М(У). Если же Х и У зависимые, то М(ХУ) ¹ М(Х)М(У).
За меру зависимости Х и У принята безразмерная величина r, определяемая соотношением
r называется коэффициентом корреляции.