Конец ознакомительного фрагмента.

Table of Contents

Яков Исидорович Перельман Физика на каждом шагу

Предисловие автора

Глава первая Немного механики

Скала Эдисона

От Москвы до Петербурга

От Земли до Солнца

Заглянуть внутрь отливки

Какой металл самый тяжелый?

Какой металл самый легкий?

Две бороны

Квашеная капуста

Трактор и лошадь

Шило и зубило

Давление небоскреба

В вагоне

На пароходе

Дорога

Две монеты

Из старинных книг

Вверх по уклону

Как взвесили Землю

Прыжки вверх

Удар

Яйцо в стакане

Необычайная поломка

Рычаги

Билетный автомат

Ворот и шпиль

Золотое правило механики

Машины Архимеда

Лошадиная сила и работа лошади

Искуснее Колумба

Движение по кругу

Где легче всего?

Если бы Земля вращалась быстрее…

Сжатие земного шара

Конец ознакомительного фрагмента.

Примечания

Annotation

Одно из лучших классических пособий по физике.

Занимательные рассказы, поучительные опыты, интересные факты научат любознательного читателя замечать простейшие физические явления и понимать их природу.

 

· Яков Исидорович Перельман

o Предисловие автора

o Глава первая Немного механики

§ Скала Эдисона

§ От Москвы до Петербурга

§ От Земли до Солнца

§ Заглянуть внутрь отливки

§ Какой металл самый тяжелый?

§ Какой металл самый легкий?

§ Две бороны

§ Квашеная капуста

§ Трактор и лошадь

§ Шило и зубило

§ Давление небоскреба

§ В вагоне

§ На пароходе

§ Дорога

§ Две монеты

§ Из старинных книг

§ Вверх по уклону

§ Как взвесили Землю

§ Прыжки вверх

§ Удар

§ Яйцо в стакане

§ Необычайная поломка

§ Рычаги

§ Билетный автомат

§ Ворот и шпиль

§ Золотое правило механики

§ Машины Архимеда

§ Лошадиная сила и работа лошади

§ Искуснее Колумба

§ Движение по кругу

§ Где легче всего?

§ Если бы Земля вращалась быстрее…

§ Сжатие земного шара

o Конец ознакомительного фрагмента.

· notes

o 1

o 2

o 3

o 4

 

Яков Исидорович Перельман
Физика на каждом шагу

Ловкость в производстве опытов не дается сама собою; она приобретается только трудом. Когда вы учитесь танцевать, ваши первые движения неуклюжи, и только путем упражнения научаетесь танцевать. Таков же и единственный путь научиться производить опыты. Поэтому не следует смущаться своею неловкостью на первых порах; повторяя и повторяя то же дело, вы скоро справитесь с ним и приобретете недостававшие вам навык и ловкость.

Идя таким путем, вы вступите в прямое сношение с природой, вы будете размышлять не о том, что прочитали в книгах, а о том, что говорит вам сама природа. Мысли, порожденные этим источником, отличаются удивительною живостью, какой не может им дать одно книжное знание.

Джон Тиндаль «Уроки по электричеству»

Предисловие автора

Эта книга содержит сотню пестрых рассказов из области физики, расположенных в определенной системе, несмотря на непринужденную внешнюю форму. Предназначена она для тех, кто владеет лишь самыми начальными сведениями из физики или вовсе еще не приступал к ее изучению. Она заметно отличается, следовательно, от другой книги того же автора – «Занимательная физика», сходной по манере изложения, но имеющей в виду более сведущего читателя. «Физика на каждом шагу» не стремится заменить собою школьный учебник. Ее цель – побудить читателя к сознательному наблюдению простейших физических явлений, научить замечать их в окружающей обстановке, в обиходе, в природе, в технике, незаметно накопляя тот запас фактов, систематическим изучением которых занимается физическая наука. Сведения из теории сообщаются лишь самые элементарные и в весьма скромном объеме; главное же внимание привлекается к фактам и опытам. Подбор опытов таков, что их можно выполнять и черпать из них поучения без всяких приборов. Отдельные страницы книги посвящены эпизодам из истории физики.

Для второго издания текст книги пересмотрен и дополнен многочисленными вставками; все иллюстрации, помещенные в этом издании, – новые[1].

Глава первая Немного механики

Скала Эдисона

Незадолго до смерти знаменитый американский изобретатель Эдисон пожелал отличить самого сметливого юношу своей страны, назначив ему щедрую денежную поддержку для дальнейшего образования. Со всех концов республики были направлены к нему молодые люди, по одному от каждого штата, отобранные школьным начальством. Эти полсотни юношей подверглись в доме Эдисона письменному экзамену: они должны были ответить на 60 вопросов особой викторины, составленной изобретателем и его сотрудниками. Судьями были сам Эдисон, «автомобильный король» Форд, прославленный летчик Линдберг и несколько видных американских педагогов. Один из вопросов Эдисоновой викторины, который я хочу предложить и вам, состоял в следующем:

 

Вообразите, что вы очутились на тропическом острове Тихого океана без всяких орудий. Как сдвинули бы вы там с места груз в 3 т, например гранитную глыбу в 100 футов длины и 15 футов высоты?

 

Рис. 1. Томас Алва Эдисон (1847–1931), американский изобретатель и предприниматель

 

Задача кажется неразрешимой. Что поделаешь голыми руками с трехтонной каменной глыбой таких внушительных размеров?

Вникнем однако поглубже в задачу и постараемся представить себе наглядно эту Эдисонову скалу. Мы знаем ее вес, длину, ширину, но об ее толщине в задаче ни слова не сказано. Почему Эдисон умолчал о ней? Не тут ли кроется разгадка?

Дознаемся же сами, какова должна быть толщина этой скалы. Прежде всего определим по весу ее объем. Скала гранитная, а сколько весит кубический метр гранита, мы можем узнать из справочника. В «таблице удельных весов» разных материалов находим, что удельный вес гранита, круглым числом, 3. Это значит, что кубический сантиметр гранита весит 3 г или кубический метр гранита весит 3 т. Одно вытекает из другого, потому что в кубическом метре миллион кубических сантиметров, а в одной тонне – миллион граммов. Но если каждый кубический метр Эдисоновой глыбы весит 3 т, а весу в глыбе как раз 3 т, то ясно, что объем ее – всего один кубический метр. При таком небольшом объеме глыба однако растянулась в длину на 100 футов, а в высоту – на 15 футов.

 

Рис. 2. Задача Эдисона: надо без всяких орудий сдвинуть с места трехтонную гранитную скалу в 100 футов длины и 15 футов высоты

 

Очевидно, она очень тонка. Прикинем, какой она толщины. Объем, как известно, получается умножением длины на ширину и на толщину. Следовательно, разделив объем на длину и на ширину, мы узнаем толщину. Так и поступим с объемом нашей скалы: разделим 1 кубометр сначала на 100 футов (т. е. на 30 м) потом на 15 футов (т. е. примерно на 5 м), а еще лучше – сразу на 30 × 5, т. е. на 150. Что же получится? Всего 1/150 м, или около 7 миллиметров.

 

Рис. 3. Вот какова скала в задаче Эдисона

 

Вот какова толщина Эдисоновой скалы: только 7 мм! На острове возвышается, мы видим, тонкая гранитная стенка, своего рода диковинка природы. Опрокинуть подобную стенку ничуть не трудно даже голыми руками: напереть на нее покрепче или навалиться на нее с разбегу – и она не устоит.

От Москвы до Петербурга

Вы сейчас убедились, как полезно знать то, что в физике и технике называется «удельным весом» материала, т. е. вес одного его кубического сантиметра (в граммах).

Если вам известно, например, что удельный вес железа около 8, то вы сможете определить простым расчетом вес любого железного изделия, зная только его объем. Для этого вам не понадобится класть изделие на весы, а достаточно только умножить число кубических сантиметров его объема на 8. Часто это единственный способ узнать вес тела, – например, когда требуется определить заранее, сколько будет весить изделие, еще не изготовленное, а только обозначенное на рабочем чертеже.

Возьмем такую задачу:

 

Сколько весит железная телеграфная проволока, соединяющая Москву с Петербургом? Толщина проволоки 4 мм, длина 650 км.

 

Решить эту задачу можно, конечно, только расчетом, – не сматывать же проволоку с телеграфных столбов! Найдем сначала объем проволоки. Для этого, по правилам геометрии, нужно величину поперечного сечения проволоки умножить на ее длину. Площадь сечения нашей проволоки есть площадь кружка диаметром 4 мм, или 0,4 см. Она равна, как учит геометрия:

 

3,14 × 0,22 = 0,126 см2.

 

Длина же проволоки

 

650 км = 650 000 м = 65 000 000 см.

 

Значит, объем проволоки

 

0,126 × 65 000 000 = 8 190 000 см3,

 

а круглым счетом – 8 млн. см3. Так как каждый кубический сантиметр железа весит, мы знаем, 8 г, то вес провода Москва – Ленинград равен:

 

8 × 8 000 000 = 64 000 000 г = 64 т.

 

Это, примерно, вес паровоза. Если бы на одну чашку весов можно было положить моток телеграфной проволоки, соединяющей Москву с Питером, то на другую чашку надо было бы для равновесия вкатить целый паровоз.

Сходным расчетом могли бы вы узнать, сколько тонн проволоки понадобилось бы для телеграфного соединения Земли с Луной, – нужды нет, что на деле протянуть такой провод невозможно. Раз известно расстояние от Земли до Луны, задана толщина проволоки и имеется удельный вес материала, то все остальное можно выполнить просто карандашом на бумаге.

Сейчас мы проделаем еще более удивительный расчет в этом роде.

От Земли до Солнца

Что может быть нежнее и тоньше паутинной нити? Тонкость ее вошла в поговорку, и недаром: нить паутины в десять раз тоньше волоса; поперечник ее равен только 0,005 мм. Этой необычайной тонкостью объясняется легкость паутины, потому что сам по себе материал ее не так уж легок. Удельный его вес, т. е. вес 1 см3, составляет 1 г; значит, паутина тяжелее дубовой древесины, и только своей исключительной тонкости обязана она тем, что весит так ничтожно мало. Теперь мы сообщили читателю все данные для решения следующей интересной задачи (придуманной нашим известным физиком A.B. Цингером):

 

Сколько весила бы паутина, протянутая от Земли до Солнца, т. е. на расстоянии 150 млн. км?

 

Ответить, даже приблизительно, на этот вопрос, не производя расчета, едва ли кому удастся: расстояние до Солнца слишком огромно, а паутина чересчур тонка, чтобы возможно было предугадать ответ. Произведем же выкладки; они те же, что и для телеграфной проволоки предыдущей задачи.

Найдем площадь разреза паутины, зная, что диаметр ее равен 0,005 мм, или 0,0005 см.

 

3,14 × 0,00 0252 = около 0,0000002 см2.

 

Длина паутинной нити:

 

150 000 000 км = 15 000 000 000 000 см.

 

Отсюда определяется объем всей нити:

0,0000002 × 15 000 000 000 000 = 8 000 000 см3.

 

Мы знаем, что 1 см3 материала паутинной нити весит 1 г; поэтому вес нашей воображаемой паутины

 

3 000 000 г = 3 000 кг = 3 т.

 

Итак, паутинная нить, протянутая от Земли до самого Солнца, весила бы только 3 т! Ее можно было бы увезти на хорошем грузовике!

Заглянуть внутрь отливки

Знание удельного веса дает возможность, не распиливая изделия, как бы заглянуть внутрь него и установить, есть ли в нем пустоты, или же оно сплошное. Приведем пример.

 

Пусть у вас в руках медное изделие, – скажем, статуэтка, – и вы желаете узнать: сплошная она или внутри нее имеется полость? Просверливать, вообще повреждать статуэтку вы не желаете, конечно. Как поступить?

 

Прежде всего нужно определить объем статуэтки. Для этого наливаем в прямоугольную банку воду, замечаем высоту уровня воды и погружаем нашу статуэтку: по повышению уровня воды легко вычислить объем изделия. Пусть ширина банки 12 см, длина 15 м, а уровень воды поднялся на 1,5 см. Тогда объем воды, вытесненной изделием, равен 12 × 16 × 1,5 = 270 см3. Но эта прибавка есть, конечно, объем статуэтки. 1 см3 меди весит около 9 г. Поэтому, если бы вещь была сплошная, она весила бы примерно

 

270 × 9 = 2 430 г.

 

Теперь вы обращаетесь к весам (без которых в данном случае обойтись нельзя) и узнаете, что в действительности статуэтка весит всего 2 200 г, т. е. на 230 г меньше. Это показывает, что внутри нее имеется одна или несколько полостей, общий объем которых равен объему недостающих 230 г меди. Какой объем занимают 230 г меди? Мы узнаем это, разделив 230 на 9. Получим 25 1/2 см3.

 

Рис. 4. Простой способ определить объем статуэтки

 

Таким образом, не повреждая статуэтки, мы узнали не только то, что статуэтка заключает внутри себя полость или несколько полостей, но определили даже и объем этих пустот – около 25 см3.

Какой металл самый тяжелый?

В обиходе свинец считается тяжелым металлом. Он тяжелее цинка, олова, железа, меди, но все же его нельзя назвать самым тяжелым металлом. Ртуть, жидкий металл, тяжелее свинца; если бросить в ртуть кусок свинца, он не потонет в ней, а будет держаться на поверхности. Литровую бутылку ртути вы с трудом поднимете одной рукой: она весит без малого 14 кг. Однако и ртуть не самый тяжелый металл: золото и платина тяжелее ртути раза в полтора.

Рекорд же тяжеловесности побивают редкие металлы – иридий и осмий: они почти втрое тяжелее железа и более чем в сто раз тяжелее пробки; понадобилось бы 110 обыкновенных пробок, чтобы уравновесить одну иридиевую или осмиевую пробку таких же размеров.

Приводим для справок удельный вес некоторых металлов:

Какой металл самый легкий?

Техники называют «легкими» все те металлы, которые легче железа в два и более раз. Самый распространенный легкий металл, применяемый в технике, – алюминий, который легче железа втрое. Еще легковеснее металл магний: он легче алюминия в 1 1/2 раза. В последнее время техника стала пользоваться для изделий сплавом алюминия с магнием, известным под названием «электрон». Этот сплав, по прочности не уступающий стали, легче ее в четыре раза. Самый же легкий из всех металлов – литий – в технике пока еще не применяется. Литий не тяжелее еловой древесины; брошенный в воду, он не тонет.

Если сравнить между собою самый тяжелый и самый легкий металл – иридий и литий, то окажется, что первый весит больше второго в 40 с лишком раз.

Вот удельные веса некоторых легких металлов:

Две бороны

Часто смешивают вес и давление. Между тем это вовсе не одно и то же. Вещь может обладать значительным весом и все же оказывать на свою опору ничтожное давление. Наоборот, иная вещь при малом весе производит на опору большое давление. Из следующего примера вы сможете уяснить себе различие между весом и давлением, а заодно поймете и то, как нужно рассчитывать давление, производимое предметом на свою опору.

 

В поле работают две бороны одинакового устройства – одна о 20 зубьях, другая о 60. Первая весит вместе с грузом 60 кг, вторая – 120 кг. Какая борона работает глубже?

 

Легко сообразить, что глубже должны проникать в землю зубья той бороны, на которые напирает большая сила. В первой бороне общая нагрузка в 60 кг распределяется на 20 зубьев; следовательно, на каждый зуб приходится нагрузка в 3 кг. Во второй бороне на каждый зуб приходится всего 120/60, т. е. 2 кг. Значит, хотя вторая борона в общем тяжелее первой, зубья ее должны уходить в почву мельче. Давление на каждый зуб у первой бороны больше, чем у второй.

Квашеная капуста

Рассмотрим еще один расчет давления.

 

Две кадки с квашеной капустой покрыты лежащими на капусте деревянными кругами с камнями. В одной кадке круг имеет в поперечнике 24 см и нагружен 10 кг; в другой поперечник круга равен 32 см, а груз – 16 кг. В какой кадке капуста находится под большим давлением?

 

Давление, очевидно, больше в той кадке, где на каждый квадратный сантиметр приходится больший груз. В первой кадке груз в 10 кг распределяется на площадь в 3,14 × 10000 × 12 × 12 = 452 см, и, значит, на 1 см2 приходится 10 000/452, т. е. около 22 г. Во второй кадке давление на 1 см2 составляет 16000/804, т. е. менее 20 г. Следовательно, в первой кадке капуста сдавлена сильнее.

Следует отличать давление от силы давления. Давление есть та сила, с которой тело надавливает на один квадратный сантиметр опоры. В примере с капустой сила давления камней есть 10 кг и 16 кг, давление же – 22 г/см2 и 20 г/см2. Зная это, вы сможете уже самостоятельно выполнять расчеты, относящиеся к давлению.

Трактор и лошадь

Тяжелый гусеничный трактор хорошо держится на таком рыхлом грунте, в котором увязают ноги лошадей и даже людей, гораздо более легких (рис. 5).

Чем это объяснить?

 

Рис. 5. Почему гусеничный трактор не проваливается там, где увязает лошадь?

 

После сказанного раньше вы без труда разберетесь в этом. Увязание в грунте зависит не от веса вещи, а от ее давления, от той доли веса, которая приходится на квадратный сантиметр опоры. Огромный вес трактора распределяется на довольно большую поверхность его «гусениц», надетых на колеса. Поэтому на один квадратный сантиметр опоры трактора приходится сравнительно небольшой вес – около сотни граммов, не больше. Напротив, вес лошади и человека распределяется на небольшую площадь копыт или ступней, так что на квадратный их сантиметр приходится у лошади около 1 200 г, а у человека – 500 г, т. е. гораздо больше, чем у трактора. Даже тяжелый военный танк давит на квадратный сантиметр с силою, лишь немного большею, чем человек: около 600 граммов.

Неудивительно, что человек и лошадь вдавливаются в почву глубже, чем гусеничный трактор.

По той же причине не проваливается на рыхлом снегу человек, идущий на лыжах, хотя без лыж он на том же снегу удержаться не может.

Шило и зубило

Почему шило вонзается глубже, чем зубило, когда на оба орудия напирают одинаково?

 

Причина – различие давления. При напоре на шило вся сила сосредоточивается на очень небольшом пространстве его острия. При надавливании же на тупое зубило та же самая сила распределяется на гораздо большую поверхность. Пусть, например, шило соприкасается с материалом по поверхности в 1 мм2, а зубило – на пространстве в 1 см2. Если напор на каждый инструмент равен 1 кг, то под лезвием зубила материал испытывает давление в 1 кг на 1 см2, а под шилом – в 1: 0,01 = 100, т. е. 100 кг на 1 см2 (потому что 1 мм2 = 0,01 см2). А если давление под шилом в сотню раз сильнее, чем под зубилом, то ясно, почему шило вонзится глубже, чем зубило.

Вы поймете теперь, что, надавливая пальцем на иглу при шитье, вы производите очень большое давление, нисколько не меньшее, чем давление пара в ином паровом котле. В этом же и секрет режущего действия бритвы: легкий напор руки создает на тонком острие бритвы давление в сотни килограммов на см2 – и волос срезается.

Давление небоскреба

Высочайшая в Европе башня – Эйфелева в Париже – хотя и сооружена целиком из железа, весит много меньше, чем прославленные американские небоскребы. Причина та, что башня Эйфеля сквозная, ажурная, между тем как небоскребы – сплошные, массивные. Можно себе представить, какой чудовищный вес имеет подобное здание. Но если вы думаете, что и давление его на почву невообразимо велико, то ошибаетесь, – оно довольно умеренное и для небоскреба неожиданно мало. Вы поймете, в чем здесь дело, если прочтете следующий отрывок из книги американского писателя Бонда «Герои техники».

Описывается посещение строящегося небоскреба в Америке. Один из посетителей задает мастеру вопрос:

«– Какой предел высоты существует для небоскреба? В конце концов фундамент может ведь не выдержать его веса!

– Безусловно выдержит, – ответил мастер и стал искать наглядный пример. Вытащив из кармана маленький болт, он отвинтил гайку, измерил ее поверхность и нашел, что она равна около 6 см2. Тогда он положил гайку на землю и наступил на нее.

– Так. Теперь я оказываю на грунт не меньшее давление, чем весь небоскреб.

Мы смотрели на него с недоумением.

– Именно так, – продолжал он. – Я вешу 82 килограмма. Нагрузка в 82 килограмма на 6 квадратных сантиметров. Сколько это составит на один квадратный сантиметр?

– Около 13 1/2 килограммов.

– Правильно. И нью-йоркские строительные городские правила запрещают нагружать фундаменты больше чем 13 1/2 килограммами на квадратный сантиметр.

– Но ведь невероятно, чтобы квадратный сантиметр такого большого здания давил на грунт с силой не более 13 1/2 килограммов?

– Здание опирается на фундамент, распределяющий общий вес на огромную массу бетона. Под зданием 70 бетонных площадок, каждая до 6 метров шириною. Общий же вес сооружения будет около 120 000 тонн… Мы далеко еще не дошли до предела. Вычислено, что на фундаменте в 3 600 квадратных метров может быть построено здание в 150 этажей и 600 метров высоты; оно будет весить около 520 000 тонн».

Шестисотметрового небоскреба, заметим от себя, американцы еще не построили, но рекорд, поставленный знаменитою Эйфелевой башней высотою 300 метров, уже превзошли; в Нью-Йорке высятся уже два готовых небоскреба, поднимающих свою верхушку выше этого сооружения – один на 20 метров, другой на 80 метров[2].

В вагоне

Поезд идет со скоростью 36 км в час. Находясь в вагоне, вы подпрыгнули вверх и продержались в воздухе одну секунду. Опуститесь ли вы на то же место, откуда подпрыгнули, или нет? Если в другое место, то куда оно ближе – к передней или к задней стенке вагона?

 

Как ни странно, но вы опуститесь как раз в то же самое место, откуда подпрыгнули, и вот почему: отделившись от пола и держась в воздухе, вы продолжаете по инерции двигаться вперед вместе с поездом и притом с тою же скоростью; пол под вами уносится вперед, но и вы мчитесь с такою же быстротою, оставаясь все время над тем местом, с которого вы подпрыгнули.

На пароходе

Двое играют в мяч на идущем пароходе. Один стоит на корме, другой – у носа. Кому труднее добросить мяч до партнера – стоящему на корме или стоящему у носа?

 

И здесь, как в предыдущем случае, ответ неожиданный: ни один из игроков не имеет выгоды перед другим: обоим одинаково легко (или одинаково трудно) добрасывать мяч.

 

Рис. 6

Это кажется на первый взгляд неправдоподобным: ведь мяч, брошенный к носу парохода, должен догонять стоящего там игрока, который несется вперед вместе с пароходом; напротив, мяч, брошенный к корме, летит к игроку, который несется ему навстречу. Безусловно так; но надо помнить и то, что к скорости мяча, брошенного от кормы к носу, прибавляется скорость парохода, а от скорости мяча, брошенного к корме, скорость парохода отнимается. Поэтому невыгода первого мяча смягчается, а выгода второго понижается, и оба мяча оказываются в одинаковых условиях.

Если бы это было не так, то стрелок, стреляющий в восточном направлении, в сторону вращения Земли, имел бы огромную выгоду перед тем стрелком, который посылает пулю на запад, против вращения Земли. На самом деле ничего подобного не наблюдается.

Дорога

Телега вместе с кладью весит 500 кг. С какою силой должна тянуть лошадь, чтобы двигать эту телегу?

Конечно, необходимое усилие прежде всего зависит от скорости телеги: чем быстрее надо везти телегу, тем большая сила должна быть к ней приложена. Но это не значит, что самая слабая тяга достаточна для приведения телеги хотя бы в очень медленное движение.

Всем известно, что ребенок, как бы долго он ни тянул тяжело нагруженную телегу, не в силах сдвинуть ее с места. Какая же наименьшая сила необходима, чтобы привести телегу в движение и поддерживать это движение?

Опыт показывает, что необходимое усилие зависит от веса телеги и от состояния дороги. На хорошей асфальтовой мостовой надо тянуть телегу с силой, составляющей всего сотую долю веса телеги; на плохой же булыжной мостовой сила тяги должна составлять около одной тридцатой веса телеги. Поэтому, если вес нагруженной телеги 500 кг, то, чтобы ее везти по ровной асфальтовой дороге, достаточно усилия

 

500 × 0,01 = 5 кг;

 

между тем, чтобы везти ту же телегу по ровной булыжной мостовой, потребуется сила примерно втрое больше – 15 кг. Это значит, что на асфальтовой мостовой одна и та же лошадь может везти втрое больший груз, чем на булыжной.

Еще больше свезет та же лошадь на рельсовом пути – в 6 раз больший груз, чем на булыжной мостовой.

Отсюда ясно, какое большое хозяйственное значение имеет исправное состояние дорог в стране: хорошая дорога дает большую экономию сил.

Самой экономной дорогой является вода, даже тогда, когда мы не пользуемся ее течением.

Две монеты

Вы подняли вверх на одинаковую высоту две монеты – копеечную и пятикопеечную – и одновременно выпустили их из рук. Какая раньше ударится о пол? Монеты падают у вас ребром, легко разрезая воздух, поэтому его сопротивлением вы можете пренебречь.

 

Принято думать, что тяжелые вещи падают быстрее легких (даже в пустоте). Поэтому на вопрос нашей задачи чаще всего отвечают так, что пятикопеечная монета достигнет пола раньше копеечной. Однако можно, даже и не делая опыта, показать, что этот ответ неверен.

Допустим в самом деле, что тяжелые вещи падают быстрее легких, и посмотрим, куда нас заведет такая мысль. Раз пятикопеечная монета падает быстрее копеечной, то как будут падать эти монеты, если их вместе склеить (например воском)? Вспомните, как вы ходите, когда ведете за руку своего малолетнего братишку: ваша ходьба замедляется медленным движением брата. Точно так же и копеечная монета будет замедлять падение пятикопеечной, и склеенные монеты должны падать медленнее, чем пятикопеечная сама по себе.

Что же получается? Шесть копеек падают медленнее пяти, тяжелая вещь медленнее легкой! А ведь начали, мы с того, что тяжелые вещи падают быстрее легких. Произошла путаница, которая доказывает, что мы начали с ошибочной мысли.

Итак, неверно, будто тяжелые вещи падают скорее легких. Неужели же они падают медленнее? Посмотрим, куда заведет нас эта мысль. Опять вообразим, что мы склеили обе монеты. На этот раз копеечная, по-нашему быстрее падающая, должна будет уже не замедлять, а ускорять падение пятикопеечной, и обе вместе поэтому упадут быстрее, чем пятикопеечная сама по себе. Что же? Шесть копеек падают быстрее пяти, тяжелая вещь быстрее легкой! Опять путаница: ведь начали мы с того, что тяжелые веши, наоборот, падают медленнее…

Вы видите, что одинаково ошибочно считать тяжелые вещи падающими быстрее или падающими медленнее, нежели легкие. Остается только одна возможность: и тяжелые и легкие вещи падают одинаково. Это и есть правильная мысль: все вещи падают с одинаковой быстротой (если воздух не мешает их свободному падению).

Значит, монеты наши упадут на пол одновременно. Легко убедиться в этом, проделав простой опыт; подняв обе монеты на одинаковую высоту, выроните их из рук одновременно: вы услышите не два удара, а один слитный звук (для отчетливости опыта необходимо, чтобы монеты падали на что-нибудь твердое).

Из старинных книг

Рассуждение, за которым вы сейчас проследили, принадлежит гениальному ученому XVII века Галилею, тому самому, который первый доказал, что наша Земля не стоит на месте, а, подобно другим планетам, кружится вокруг своей оси и вокруг Солнца. Галилей был не только великий астроном, но и величайший физик, отец физической науки.

Вероятно, вам интересно будет прочитать подлинный отрывок из его книги, где он говорит о падении тел и где мысли, сейчас изложенные, установлены были впервые. Отрывок представляет спор между двумя учеными. Один держится старинного взгляда на падение вещей, взгляда, установленного древним мыслителем Аристотелем; учения Аристотеля слепо придерживались все ученые, жившие во времена Галилея. Другой участник спора – сам Галилей.

 

Рис. 7. Галилей, основатель физики

 

Итак, раскроем книгу великого основателя физики в прочтем из нее две страницы:

«– Аристотель утверждает, что различные тела в одной и той же среде движутся с разною скоростью и так, что груз, больший в десять раз, движется вдесятеро скорее.

– Очень сомневаюсь в том, чтобы Аристотель когда-нибудь проверил на опыте, действительно ли два камня, из которых один вдесятеро тяжелее другого, если пустить их в одно и то же мгновение, например с высоты 100 локтей, – что такие два камня получат настолько различное движение, что по прибытии большего на место меньший пройдет лишь 10 локтей.

– По вашим словам, можно думать, что вы производили подобные опыты, иначе вы не говорили бы таким образом.

– Не производя таких опытов, мы можем путем одного лишь краткого рассуждения доказать невозможность того, чтобы больший груз двигался скорее, нежели меньший, если они состоят из одного и того же вещества. Если у нас имеются два тела, обладающие разными скоростями, и если мы их соединим, то ясно, что движущееся скорее получит замедление, а движущееся медленнее – ускорение. Согласны вы с этим?

– Этот вывод я нахожу совершенно правильным.

– Но если это верно и если бы было справедливо, что больший камень движется, например, со скоростью 8 локтей, а малый со скоростью 4 локтей, то оба вместе должны были бы, если их соединить, обладать скоростью меньше, чем в 8 локтей. Но ведь оба камня вместе, конечно, больше, чем большой камень, обладавший скоростью в 8 локтей; и, стало быть, выходит, что больший камень (происшедший от соединения двух) будет двигаться медленнее, чем меньший, – а это противоречит вашему предположению. Вы видите, что из допущения, будто большее тело обладает большею скоростью, чем меньшее, я вас могу привести к выводу, что большее тело движется медленнее, чем меньшее.

– Я совсем смущен, потому что мне все-таки кажется, что меньший камень, соединенный с большим, увеличивает его вес, а потому должен увеличить также и его скорость или, по крайней мере, не уменьшать ее.

– Вы впадаете в новую ошибку: неверно, будто меньший камень увеличивает вес большего.

– Вот как? Это выходит за границы моего понимания!

– Вы все поймете, если я вас высвобожу из того заблуждения, в котором вы находитесь. Заметьте хорошо, что в данном вопросе надо различать, движется ли уже тело или находится в покое. Если мы положим камень на одну чашку весов, то от прибавки еще одного камня вес увеличится; даже от прибавления куска пакли он возрастает. Но если вы возьмете камень, связанный с паклей, и дадите ему возможность свободно падать с большой высоты, то, как вы думаете, будет ли пакля во время движения давить на камень и ускорять его движение, или же камень будет задерживаться в своем движении, как бы поддерживаемый куском пакли? Мы ощущаем груз на наших плечах, если стараемся мешать его движению. Но если мы станем двигаться (вниз) с такою же скоростью, как и груз, лежащий на нашей спине, то как может он давить и обременять нас? Не согласны ли вы, что это подобно тому, как если бы мы захотели поразить копьем кого-либо, кто бежит впереди нас с такою же скоростью, как и мы? Итак, вы должны вывести заключение, что при свободном падении малый камень не давит на большой и не увеличивает его веса, как это бывает при покое.

– Ну, а если бы больший камень покоился на меньшем?

– Тогда он должен был бы увеличить его вес, если бы скорость его была больше. Но мы уже нашли, что если бы меньший груз падал медленнее, то уменьшил бы скорость большого груза; следовательно, составная масса двигалась бы медленнее своей части, что противоречит вашему допущению. Итак, разрешите принять, что большие и малые тела равного удельного веса движутся с одинаковою скоростью».

Замечательно, что подобные же мысли задолго до Галилея высказывал древнеримский поэт-ученый Лукреций Кар.

В своей большой поэме «О природе вещей» он утверждал, что свободно падающие вещи не могут давить одна на другую; кроме того, он ясно сознавал, что причина неодинаковой скорости падения различных вещей в воздухе или в жидкостях заключается в том, что вещи массивные встречают со стороны окружающей среды неодинаковое сопротивление.

Вот это поучительное место поэмы:

Если кто думает, будто тела, тяжелейшие весом,
прямо в пространстве пустом, проносясь с быстротою
великой,
падают сверху на более легкие и производят
этим толчки, что способны творящие вызвать движения, —
то уклоняются очень далеко от верной дороги.
Жидкой воды вещество, как и воздух весьма легковесный,
в равном размере падение тел всех замедлить не могут,
а уступают скорее дорогу телам с большим весом.
Но пустота никакому предмету, нигде, ниоткуда
не в состоянии вовсе оказывать сопротивленья,
так как всему поддаваться должна уж по самой природе.
Вследствие этого вещи, которые разнятся весом,
падать должны одинаково все в пустоте неподвижной.

 

Вверх по уклону

Мы так привыкли видеть тела, скатывающимися с наклонной плоскости вниз, что пример тела, свободно катящегося по ней вверх, кажется нам чудом. Нет ничего легче однако, как устроить такое мнимое чудо.

Возьмите два одинаковых кружка из легкого дерева и насадите их на валик, как колеса на ось (см. рис. 8). К валику прикрепите конец тонкой бечевки, к другому концу которой привязан груз. Намотав бечевку на валик так, чтобы груз вплотную примыкал к валику, поставьте колеса на наклонную дощечку; они сами покатятся, но не вниз, а вверх по уклону.

 

Рис. 8. Эти колеса могут катиться сами вверх по уклону

 

Причина понятна: груз, стремясь упасть, разматывает бечевку, заставляя тем самым вращаться колеса, которые и катятся вверх по уклону. Конечно, уклон должен быть не крутой. Здесь нет никакого нарушения законов физики. Внимательно проделывая опыт, вы можете заметить, что хотя колеса и вкатываются вверх, груз все же в конце пути не оказывается выше, чем в начале. Центр тяжести всего приборчика понизился.

Наш опыт можно обставить и еще занятнее. Обклейте колеса бумагой так, чтобы получился цилиндр, скрывающий свой нехитрый внутренний «механизм». Теперь, намотав бечевку на валик, поместите цилиндр посредине наклонной доски и спросите зрителей: куда покатится цилиндр – вверх или вниз? Все, разумеется, скажут, что вниз, и будут крайне изумлены, когда на их глазах цилиндр покатится вверх.

Как взвесили Землю

Прежде всего необходимо объяснить смысл выражения: «взвесить Землю». Ведь если бы даже было возможно взвалить земной шар на какие-нибудь весы, то где же весы эти установить? Когда мы говорим о весе какой-нибудь вещи, то в сущности речь идет о той силе, с какой вещь эта притягивается Землей или стремится падать к Земле, к ее центру. Но сама-то наша Земля не может же падать на себя! Поэтому говорить о весе земного шара бессмысленно, пока не установлено, что надо понимать под этими словами.

Смысл слов «вес Земли» может быть только таков. Вообразите, что из Земли вырезали куб в метр вышины и взвесили. Вес этого куба записали, а сам куб поместили на прежнее место; потом вырезали соседний кубический метр и тоже взвесили. Записав вес второго куба, установили его на свое место и вырезали третий. Если перебрать так один за другим все кубические метры, из которых состоит наша планета, взвесить их поодиночке, а затем все их веса сложить, мы узнаем, сколько весит все вещество, составляющее земной шар. Короче сказать, поступая указанным образом, мы взвесили бы Землю.

Само собою разумеется, что на деле выполнить такую работу немыслимо. Если бы мы даже могли изрыть всю поверхность земного шара, то забраться в его недра мы не в силах. Нигде еще человек не вкапывался в землю глубже 4 километров, – а ведь до центра земного шара свыше 6 000 километров… Значит ли это, что людям надо отказаться от надежды узнать вес своей планеты? Существует, однако, косвенный путь для взвешивания земного шара. Ученые пошли по этому пути и достигли полного успеха. Вот в чем состоит этот косвенный путь. Мы знаем, что вес вещи есть сила, с какою эта вещь притягивается Землею. Один кубический сантиметр воды притягивается Землею с силой одного грамма (ведь он весит один грамм). Если мы возьмем не кубический сантиметр воды, а кубический метр воды, заключающий воды в миллион раз больше, то он будет притягиваться в миллион раз сильнее: его вес будет 1 000 000 граммов, т. е. одна тонна. Но притяжение между взвешиваемою вещью и Землею зависит также от количества материи в ней, и если бы наша планета заключала в себе вещества в миллион раз больше, один грамм весил бы на такой Земле целую тонну. И наоборот, если бы Земля заключала в миллион раз меньше вещества, она притягивала бы все вещи во столько же раз слабее, и тогда один грамм весил бы на такой планете только миллионную долю грамма.

Косвенный путь взвешивания Земли состоял в том, что ученые изготовили как бы крошечную Землю и измерили, с какою силою она притягивает к себе 1 грамм вещества. Сделано это было примерно так. К одной чашке очень чувствительных и точных весов подвешивается шарик, и весы уравновешиваются гирей, поставленной на другую чашку. Затем под первую чашку подводят большой свинцовый шар, вес которого точно известен. При этом оказывается, что весы выходят из равновесия: большой шар притягивает к себе маленький шарик, подвешенный к чашке весов и заставляет ее опускаться. Чтобы снова уравновесить весы, нужно на другую чашку положить небольшой добавочный грузик. Этот добавочный грузик и измеряет ту силу, с какой большой шар притягивает к себе маленький. Мы можем теперь сказать, во сколько раз сила притяжения земного шара больше, чем сила притяжения свинцового шара. Но это еще не значит, что во столько же раз Земля тяжелее свинцового шара: надо принять в расчет и то, что подвешенный шарик отстоит от центра Земли на 6 400 километров, а от центра свинцового шара – всего только на несколько сантиметров. Ученым в точности известно, как ослабевает сила взаимного притяжения с увеличением расстояния; поэтому они смогли учесть влияние различия расстояния в нашем случае и определить, во сколько именно раз земной шар заключает в себе больше килограммов вещества, чем свинцовый. Короче сказать, они могли узнать, сколько весит Земля. А именно: узнали, что Земля весит круглым числом шесть тысяч миллионов миллионов миллионов тонн:

 

6 000 000 000 000 000 000 000 тонн.

 

Если бы мы отвешивали такую массу на весах и каждую секунду клали на чашку миллион тонн, то знаете, сколько времени должны были бы мы безостановочно, день и ночь, работать, чтобы закончить такое отвешивание? Двести миллионов лет! А ведь один миллион тонн во много раз тяжелее самых тяжелых сооружений, возведенных руками человека. Эйфелева башня весит всего 9 000 тонн, а корабли-исполины – линкоры и плавающие пассажирские дворцы – не тяжелее 30–50 тысяч тонн.

Тем удивительнее должна нам казаться научная изобретательность человека, который сумел измерить этот чудовищный груз, сумел взвесить ту планету, на которой он живет.

Конечно, в действительности опыт был обставлен не так просто, как мы изобразили. Чтобы сделать его суть понятнее, нам пришлось упростить его, отбросив все подробности. Притяжение свинцового шара настолько слабо, что для его обнаружения и измерения потребовался целый набор очень точных и сложных инструментов, устройство которых представляет интерес только для тех, кто намерен и имеет возможность сам повторить этот опыт.

Прыжки вверх

Прыжок с места на высоту одного метра считался в легкой атлетике довольно хорошим достижением, а прыжок на высоту полутора метров являлся уже рекордным[3]. Но как следует при этом мерить высоту прыжка?

 

Казалось бы, естественнее всего определять, на какое наибольшее расстояние удаляется от земли нижняя точка тела. Если так оценивать величину прыжка вверх, то из трех прыжков, изображенных на рис. 9, самый высокий – прыжок через барьер (крайняя правая фигура). Ведь это подъем на высоту чуть не полутора метров, между тем как на второй фигуре мы видим прыжок всего на высоту каких-нибудь 30–40 см.

Может быть, иной физкультурник так и расценит эти прыжки. Но если вы предложите оценить их физику, он удивит вас заявлением, что все три прыжка одинаковы по затраченной мускульной энергии. Почему? Потому что во всех случаях центр тяжести тела поднят на одну и ту же высоту. Центр тяжести человеческого тела находится там, где поставлено черное пятнышко на нашем рисунке. И вы видите, что три пятнышка прыгающих фигур находятся на одном и том же уровне, несмотря на различное положение тела прыгунов. А затрачиваемая энергия зависит только от того, как высоко поднят центр тяжести тела.

 

Рис. 9. Прыжки через барьер. Черное пятнышко на фигурах обозначает центр тяжести человеческого тела

Удар

Сталкиваются ли между собою две лодки, два трамвайных вагона, два крокетных или биллиардных шара, несчастный ли это случай или только очередной ход в игре, – физик обозначает такое происшествие одним коротким словом: удар. Удар длится миг, но если ударяющиеся предметы, как обычно и бывает, упруги, то в это краткое мгновение успевает совершиться весьма многое. В начале удара оба столкнувшихся предмета сжимают друг друга в том месте, где они соприкасаются. Наступает момент, когда взаимное сжатие достигает наибольшей степени; внутреннее противодействие, возникшее в ответ на сжатие, мешает дальнейшему сжатию, уравновешивая надавливающую силу. В следующий момент сила противодействия, стремясь восстановить форму тела, расталкивает предметы в противоположные стороны: ударяющий предмет получает свой удар обратно. И мы действительно наблюдаем, что если, например, биллиардный шар ударяет в другой такого же веса, но неподвижный, то налетевший шар останавливается на месте, а шар, бывший в покое, откатывается со скоростью первого шара.

Очень интересно следить за тем, что происходит, когда шар налетает на цепь соприкасающихся шаров, расставленных прямой шеренгой. Удар, полученный крайним шаром, как бы проносится через цепь, но все шары остаются на своих местах, и только крайний шар, самый далекий от места удара, отлетает в сторону: ему нечему передать удар и получить его обратно.

Этот опыт можно проделать с крокетными шарами, но он хорошо удается и с шашками или с монетами. Расположите шашки в прямой ряд – можете и очень длинный, но так, чтобы они плотно примыкали одна к другой. Придержав пальцем крайнюю шашку, ударьте по ее ребру деревянной линейкой: вы увидите, как с другого конца отлетит крайняя шашка, а все промежуточные сохранят свои места.

Яйцо в стакане

Клоуны в цирках изумляют иногда публику тем, что сдергивают скатерть с накрытого стола, – но, к общему изумлению, все тарелки, стаканы, бутылки невредимо остаются на местах. Здесь нет ни чуда, ни обмана, – это дело ловкости, которая изощряется продолжительным упражнением.

Такого проворства вам конечно не достичь. Но проделать подобный же опыт в маленьком виде будет нетрудно.

Приготовьте на столе стакан, до половины налитый водой, и почтовую карточку (еще лучше половину ее); далее, раздобудьте колечко от ключей и яйцо, сваренное для безопасности вкрутую. Расположите эти четыре предмета так: стакан с водой покройте карточкой, на нее положите кольцо, на которое стоймя опирается яйцо. Можно ли выдернуть карточку так, чтобы яйцо не покатилось на стол?

 

Рис. 10. Удар в различных опытах

 

На первый взгляд это так же трудно, как выдернуть скатерть, не уронив расставленной на ней посуды. Но вы проделаете эту замысловатую вещь, вышибив карточку удачным щелчком. Она полетит на другой конец комнаты, а яйцо… яйцо оказывается невредимым в стакане с водой! Вода смягчает удар и охраняет скорлупу от поломки.

Объяснение этого маленького чуда в том, что вследствие краткости удара яйцо не успевает получить от вышибаемой карточки заметной скорости; между тем сама карточка, получившая удар, успевает выскользнуть. Оставшись без опоры, яйцо падает отвесно в подставленный стакан.

Если опыт не удастся вам сразу, напрактикуйтесь в выполнении более легкого опыта того же рода. Положите на палец почтовую карточку (лучше – половину ее), а поверх нее монету потяжелее (пятак). Щелчком вышибаете карточку из-под монеты: бумага выскользает, монета же остается на пальце. Хорошо удается опыт, если вместо карточки взять железнодорожный билет.

При известной ловкости можно ухитриться также вышибить ножом или ребром линейки нижнюю шашку высокой стопки, не нарушая целости всего сооружения.

Необычайная поломка

Фокусники выполняют нередко красивый опыт, который кажется необычайным, хотя объясняется довольно просто. На два бумажных кольца подвешивается шест, опирающийся на них концами; сами же кольца перекинуты: одно – через лезвие бритвы, другое – через хрупкую курительную трубку. Фокусник со всего размаху ударяет по шесту палкой. И что же? Шест ломается, а бумажные кольца и трубка остаются невредимыми!

Объяснение опыта – то же, что и предыдущего. Удар настолько быстр, действие его настолько кратко, что ни бумажные кольца, ни даже концы ударяемого шеста не успевают получить перемещения. Движется только та часть шеста, которая непосредственно подверглась удару, и шест от этого переламывается. Секрет успеха, следовательно, в том, чтобы удар был очень быстр, отрывист. Медленный, вялый удар не переломит шеста, а разорвет бумажные кольца.

 

Рис. 11. Действия быстрого удара

 

Я не предполагаю у вас такой ловкости, чтобы советовать проделать подобный фокус. Вам придется примириться с более скромным видоизменением его.

Положите на край низкого стола или скамейки два карандаша так, чтобы часть их свободно выступала, и на эти свободные концы положите хрупкую палочку. Сильный и быстрый удар ребром линейки по середине палочки переломит ее, но карандаши, на которые она опиралась концами, останутся на местах.

Множество явлений обыденной жизни находят себе объяснение в этой кратковременности удара, т. е. в том, что сила, даже значительная, не может заметно сдвинуть тело, если время ее действия чересчур кратко. Орех невозможно расколоть плавным, хотя и сильным давлением ладони, но легко раздробить резким ударом кулака: в последнем случае удар не успевает распространиться по мясистой части кулака, и тогда мягкие мускулы наши, не уступая напору ореха, действуют на него, как жесткое тело.

По той же причине пуля пробивает в окне маленькую круглую дырочку, а камешек, брошенный рукой, разбивает в осколки все стекло. Еще более медленный толчок сможет повернуть оконную раму в петлях; ни пуля, ни камешек этого не сделают.

Пример такого же явления представляет перерезывание стебля ударом прута. Напирая медленно прутом, хотя бы с большой силой, вы не перережете стебля, а только отклоните его в сторону. Ударив же с размаху, вы перережете его наверняка, если стебель не слишком толст. И здесь, как в предыдущих случаях, быстротой движения прута достигается то, что удар не успевает передаться всему стеблю. Он как бы сосредоточивается на небольшом, непосредственно затронутом участке, который и принимает на себя все последствия удара.

Вот наконец еще один опыт, столь же простой, сколько и поучительный. Положите шест (например, от половой щетки) на створки раскрытой двери, привяжите к нему бечевкой тяжелый груз (чем тяжелее, тем лучше), а к грузу на другой бечевке – планку, за которую удобно было бы тянуть, ухватившись руками. Какая бечевка разорвется, если вы потянете обеими руками за планку: верхняя или нижняя? Оказывается, что от вас самих зависит устроить так, чтобы разрывалась то верхняя, то нижняя бечевка. Если потянете медленно, оборвется верхняя, если быстро – рвется нижняя.

 

Рис. 12. Где оборвется бечевка: над или под книгами?

 

Причину долго искать не придется; вы достаточно подготовлены, чтобы указать ее безошибочно. При медленном натяжении обрывается верхняя бечевка, потому что на нее действует не только сила руки, по также и вес груза; на нижнюю же действует одна лишь сила вашей руки. Иное дело при быстром рывке: груз не успевает за этот краткий миг получить заметного движения, и, значит, верхняя бечевка почти не растягивается; вся сила натяжения приходится на нижнюю бечевку – она и разрывается, даже в том случае, если толще верхней.

Рычаги

Когда приходится приподнимать тяжелый груз, например, большой валун на поле, часто поступают так: подсовывают прочную палку одним концом под валун, подкладывают близ этого конца небольшой камень, полено или что-нибудь другое для опоры и налегают рукой на другой конец палки. Если валун слишком тяжел, то таким способом удается его приподнять с места.

Такая прочная палка, могущая поворачиваться вокруг одной точки, называется «рычагом», а точка, вокруг которой рычаг поворачивается, – его «точкой опоры». Надо запомнить также, что расстояние от руки (вообще от точки, где приложена сила) до точки опоры называется «плечом рычага»; так же называется расстояние от места, где на рычаг напирает камень, до точки опоры. У каждого рычага, следовательно, два плеча. Эти названия частей рычага нам нужны для того, чтобы было удобнее описать его действие.

 

Рис. 13

 

Испытать работу рычага нетрудно: вы можете превратить в рычаг любую палочку и пробовать опрокидывать ею хотя бы стопку книг, подпирая свой рычаг книгой же. При таких опытах вы заметите, что, чем длиннее плечо, на которое вы напираете рукой, по сравнению с другим плечом, тем легче поднять груз. Вы можете на рычаге небольшою силою уравновесить большой груз только тогда, когда действуете на достаточно длинное плечо рычага, – длинное по сравнению с другим плечом. Каково же должно быть соотношение между вашею силою, величиной груза и плечами рычага, чтобы сила ваша уравновешивала груз? Соотношение таково: ваша сила должна быть во столько раз меньше груза, во сколько раз короткое плечо меньше длинного.

Приведем пример. Предположим, нужно поднять камень весом 180 кг; короткое плечо рычага равно 15 см, а длинное – 90 см. Силу, с которой вы должны напирать на конец рычага, обозначим буквой х. Тогда должна существовать пропорция:

 

х: 180= 15: 90.

 

Отсюда:

 

Значит, вы должны напирать на длинное плечо с силою 30 кг.

Еще пример: вы в состоянии налегать на конец длинного плеча рычага с силою только 15 кг. Какой наибольший груз можете вы поднять, если длинное плечо равно 64 см, а короткое – 28 см?

Обозначив неизвестный груз через х, составляем пропорцию:

 

15: х = 28: 84,

 

откуда

 

 

Значит, вы можете таким рычагом поднять не больше 45 кг.

Сходным образом можно вычислить и длину плеча рычага, если она неизвестна. Например, сила в 10 кг уравновешивает на рычаге груз в 150 кг. Какой длины короткое плечо этого рычага, если его длинное плечо равно 105 см?

Обозначив длину короткого плеча буквою х, составляем пропорцию:

 

10: 150 = х: 105,

 

откуда

 

Короткое плечо равно 7 см.

Тот вид рычага, который был рассмотрен, называется рычагом первого рода. Существует еще рычаг второго рода, с которым мы теперь познакомимся.

Предположим, нужно поднять большой брус (рис. 14). Если он слишком тяжел для ваших сил, то вы засовываете под брус прочную палку, упираете ее конец в пол и тянете за другой конец вверх. В данном случае палка является рычагом; точка его опоры на самом конце; ваша сила действует на второй конец; но груз напирает на рычаг не по другую сторону от точки опоры, а по ту же сторону, где приложена ваша сила. Иными словами, плечи рычага в данном случае: длинное – полная длина рычага и короткое – часть его, засунутая под брус. Точка же опоры лежит не между силами, а вне их. В этом отличие рычага 2-го рода от рычага 1-го рода, у которого груз и сила расположены по разные стороны от точки опоры.

 

 

Рис. 14. Рычаги 1-го и 2-го рода: груз и сила расположены по разные стороны от точки опоры

Несмотря на это отличие, соотношение сил и плеч на рычаге 2-го рода такое же, как на рычаге 1-го рода: сила и груз обратно пропорциональны длинам плеч[4]. В нашем случае, если для непосредственного поднятия двери нужно, например, 27 кг, а длина плеч 18 см и 162 см, то сила х, с которой вы должны действовать на конец рычага, определяется из пропорции

 

х: 27= 18: 162,

 

откуда

 

Ваше усилие должно быть не меньше 3 кг (не меньше потому, что сила в 3 кг только уравновешивает сопротивление двери).

Билетный автомат

Для продажи билетов, дающих право выйти на платформу, поставлены на некоторых вокзалах билетные автоматы; вы бросаете в щель автомата 10-копеечную монету – и из другой щели тотчас же выскакивает билет. Многие думают, что внутри автомата сложный механизм. Между тем приспособление здесь довольно простое: не что иное, как видоизменение известного уже вам рычага.

Взгляните на рис. 15, и секрет билетного автомата станет для вас ясен. Монета скатывается на конец рычажка и своим весом (и ударом) заставляет его опускаться. От этого противоположный, более короткий конец рычажка приподнимается, увлекая за собой пластинку, за которой на косом основании лежит стопка билетов. Пластинка поднимается ровно настолько, чтобы через образовавшуюся щелочку как раз мог проскользнуть один билетик. Вот и все нехитрое устройство автомата. Конечно, нужно подобрать длину плеч рычага так, чтобы вес и удар 10-копеечной монеты были достаточны для надлежащего поднятия пластинки. Монета меньшего веса не произведет этого действия. А кружок того же веса, но из другого материала будет иметь ведь другие размеры и, значит, не пройдет через монетную щелочку автомата.

 

Рис. 15. Устройство билетного автомата

Ворот и шпиль

Кому не случалось видеть, как из глубоких колодцев поднимают полные ведра с помощью «ворота», при этом вращается вал, на который наматывается веревка: она-то и вытягивает ведро с водою.

Почему же таким способом легче вытаскивать тяжелое ведро, чем просто руками? Рассмотрим ворот внимательнее (рис. 16). Когда поворачивают колесо А в направлении стрелки, то в том же направлении поворачивается и вал.

 

Рис. 16. Как работает ворот

 

Проведем прямую NM через ось вала. Эту прямую мы можем рассматривать как рычаг, который вращается вокруг точки О. Сила приложена в точке М, а поднимаемый груз – в N (силы по разные стороны от точки опоры: это рычаг 1-го рода). Следовательно, сила, приложенная в точке М (т. е. к колесу), во столько раз меньше силы, приложенной в N (т. е. к валу), во сколько раз ON (радиус вала) меньше ОМ (радиуса колеса). Но радиус вала всегда в несколько раз меньше радиуса колеса; следовательно, на колесо приходится действовать с силою в несколько раз меньшею, чем вес полного ведра. Отсюда ясна выгода ворота. Если, например, радиус колеса 60 см, а радиус вала 11/2 см, то ведро с водой весом 12 кг можно уравновесить силою х, которая определяется из пропорции:

 

х: 12 = 7 1/2: 60,

 

откуда

 

Существуют вороты, приспособленные не для поднятия грузов, а для волочения; такой ворот называется шпилем, или кабестаном. Здесь вал – стоячий, а не лежачий, а вместо колеса имеются длинные шесты – «водила», которыми вращают вал. Нетрудно сообразить, что сила, с какой приходится напирать на конец водила, во столько раз меньше сопротивления груза (его трения об опору), во сколько раз радиус вала меньше длины водила.

Пусть, например, нужно передвигать груз, требующий без шпиля усилия в 500 кг; имеется шпиль с валом радиуса 21 см и с водилами длиною 3 1/2 м. Тогда усилие х, которое нужно приложить к концу водил, чтобы тащить груз, найдем из пропорции:

 

х: 500 = 21: 350,

 

откуда

Золотое правило механики

На вороте или на шпиле можно, значит, небольшою силою привести в движение значительный груз. Но скорость этого движения в таких случаях бывает невелика, – меньше, чем скорость, с какою движется приложенная к вороту сила.

Рассмотрим последний пример со шпилем: при одном полном обороте конец шеста, где приложена сила, описывает путь длиною

 

2 × 3,14 × 350 = 2200 см.

 

Тем временем вал сделает также один оборот, намотав на себя кусок веревки, длиною

 

2 × 3,14 × 21 = 130 см.

 

Следовательно, груз подтянется всего на 130 см. Сила прошла 2 200 см, а груз за то же время – только 130 см, т. е. почти в 17 раз меньше. Если сравните величину груза (500 кг) с величиною усилия, прилагаемого к шпилю (30 кг), то убедитесь, что между ними существует такое же отношение:

 

500: 30 = около 17.

 

Вы видите, что путь груза во столько же раз меньше пути силы, во сколько раз эта сила меньше груза. Другими словами: во сколько раз выигрывается в силе, во столько же раз теряется в скорости.

 

Рис. 17. Объяснение золотого правила механики

 

Это правило применимо не только к вороту или шпилю, но и к рычагу, и ко всякой вообще машине (его издавна называют «золотым правилом механики»).

Рассмотрим, например, рычаг, о котором говорилось на с. 51. Здесь выигрывается в силе в 3 раза, но зато, пока длинное плечо рычага (см. рис. 17) описывает своим концом большую дугу MN, конец короткого плеча описывает втрое меньшую дугу ОР. Следовательно, и в этом случае путь, проходимый грузом, меньше пути, проходимого в то же время силою, в 3 раза – во столько же раз, во сколько эта сила меньше груза.

Теперь вам станет понятно, почему в некоторых случаях выгодно пользоваться рычагами наоборот: действуя большою силой на короткое плечо, чтобы двигать маленький груз на конце длинного плеча. Какая выгода так поступать? Ведь мы теряем здесь в силе! Конечно, зато во столько же раз выигрываем в скорости. И когда нам необходима большая скорость, мы приобретаем ее этой ценой. Такие рычаги представляют кости наших рук (рис. 18): в них мускул прикреплен к короткому плечу рычага 2-го рода и приводит в быстрое движение кисть руки.

 

Рис. 18. Наша рука – рычаг. Какого рода?

 

В данном случае потеря силы вознаграждается выигрышем скорости. Мы были бы крайне медлительными существами, если бы кости нашего скелета были устроены как рычаги, выигрывающие в силе и, значит, теряющие в скорости.

Машины Архимеда

Учение о рычаге разработано было впервые древнегреческим математиком Архимедом, жившим в Сиракузах (Сицилия) за двести лет до нашей эры. Легенды, в которых, вероятно, кроется большая доля истины, повествуют о замечательных машинах, которые были придуманы им на основе рычага. Вот что рассказывает об этом древний историк Плутарх:

«Марцел (римский полководец) приближался и по суше и морем. На суше войско шло под командою Аппия, а сам Марцел плыл во главе шестидесяти галер, о пяти рядах весел, со всякого рода метательными снарядами и оружием. Восемь судов, соединенных вместе, составляли род обширного помоста, на котором возвышалась стенобитная машина. Так плыл он к городу, доверяясь громадности и могуществу приспособлений и своей славе. Это однако не смутило Архимеда. Что все это значило в сравнении с его машинами?