ЛІНІЙНА ЗАЛЕЖНІСТЬ ТА НЕЗАЛЕЖНІСТЬ ВЕКТОРІВ.
Індивідуальне завдання №2
ЛІНІЙНІ ПРОСТОРИ.
Множина називається лінійним простором над полем Р, якщо на цій множині визначена алгебраїчна операція, яка кожній парі елементів
ставить у відповідність елемент
, а також для кожних
,
визначено добуток
. Ці операції задовольняють такі аксіоми:
1.Операція + є асоціативною, тобто
.
2. У множині існує нейтральний елемент відносно операції +, тобто
.
3. У множині для будь-якого її елемента існує обернений елемент відносно додавання, тобто
.
4. Операція + є комутативною, тобто
.
5. ,
.
6. ,
.
7. ,
.
8.
Елементи множини , звичайно, називають векторами, елементи поля Р – скалярами.
Приклад 2.1. Розглянемо множину R додатніх чисел з наступними операціями : додавання – для довільних a, b є R їх сума a+b=a´b; множення на скаляр з поля Р – для довільних a є R і +P їх добуток ´a=a . Чи утворює множина R з вказаними операціями лінійний простір?
Розв’язання: Відмітимо, що результат виконання обох операцій належить до множини R. Це випливає з властивостей операції множення додатніх чисел і степеня з додатньою основою.
Перевіримо виконання восьми аксіом означення лінійного простору
1. " а, b є R a+b=b+a, тобто a´b= b´a, що є справедливе згідно з комукаттивністю операції множення дійсних чисел.
2. " a, b, c є R (a+b)+c=a+(b+c), тобто (a´b)´c=a´(b´c), що є правильним згідно з асоціативним законом операції множення дійсних чисел.
3.$ о є R , що a+o=a, тобто a´o=a, що, як випливає з властивостей операції множення дійсних чисел.
4. " a є R , $ -a є R, що а+(-а)=о , тобто а´(-а)=1. Це можливо Û, коли –а= є R.
5. (" a є R) і (" , m є P): {(+m)´a=a+ ma}, тобто а = а .
6. (" a, b є R) і(" є P): {´(a+b)=a+ b}, тобто (a´b)=a´b
7. (" a є R) і (" , m є Р): { (ma)=(m)a}, тобто (а)=а
8. " а є R : 1´a=a, тобто а¹=а , що є правильним згідно з означенням степеня дійсного числа.
Таким чином виконуються всі аксіоми.
Отже, згідно з означенням лінійного простору множина R з вказаними двома операціями утворюють лінійний простір.
Прикладами лінійних просторів також є : числовий n-вимірний простір над полем дійсних чисел, множина
матриць порядку
з елементами з поля Р, множина
многочленів степеня не вищого від
.
ЛІНІЙНА ЗАЛЕЖНІСТЬ ТА НЕЗАЛЕЖНІСТЬ ВЕКТОРІВ.
Систему векторів а, а, … аn є L називають лінійно залежною, якщо існують скаляри не всі рівні нулю, такі що
. У протилежному випадку вектори а, а, … аn є L називають лінійно незалежними. Інакше кажучи, вектори а, а, … аn є L лінійно незалежні, якщо
лише тоді, коли
.
Вираз називають лінійною комбінацією векторів а, а, … аn . Сукупність всіх лінійних комбінацій векторів а, а, … аn називають лінійною оболонкою цих векторів.
Твердження 1. Якщо система векторів лінійного простору містить нуль-вектор, то вона лінійно залежна.
Твердження 2. Якщо підсистема системи векторів є лінійно залежною, то і сама система є лінійно залежною.
Твердження 3. Кожна підсистема лінійно незалежної системи векторів є лінійно незалежною.
Твердження 4.Система векторів лінійного простору лінійно залежна тоді і тільки тоді, коли один з цих векторів є лінійною комбінацією решти векторів.
Приклад 2.2. Довести, що система функцій лінійного простору
дійсних функцій визначених на
є лінійно незалежною.
Розв’язання. Припустимо, що , де
. Взявши
, одержимо
. Тому
. Для
з останньої рівності одержимо
. І так далі, підставляючи замість
послідовно значення
, одержуємо , що
. Це означає, що система функцій
є лінійно незалежною.