Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Рассмотрение информационных технологий управления, предназначенных для оперативной и аналитической обработки данных

 

В области ИТ управления существуют два взаимно дополняющих друг друга направления:

• технологии, ориентированные на оперативную (транзакционную) обработку данных. Эти технологии лежат в основе КИСУ, предназначенных для оперативной обработки данных. Называются подобные системы - OLTP (online transaction processing) системы;

• технологии, ориентированные на анализ данных и принятие решений. Эти технологии лежат в основе КИСУ, предназначенных для анализа накопленных данных. Называются подобные системы - OLAP (online analytical processing) системы.

Основное назначение OLAP-систем - динамический многомерный анализ исторических и текущих данных, стабильных во времени, анализ тенденций, моделирование и прогнозирование будущего. Такие системы, как правило, ориентированы на обработку произвольных, заранее не регламентированных запросов. В качестве основных характеристик этих систем можно отметить следующие:

• поддержка многомерного представления данных, равноправие всех измерений, независимость производительности от количества измерений;

• прозрачность для пользователя структуры, способов хранения и обработки данных;

• автоматическое отображение логической структуры данных во внешние системы;

• динамическая обработка разряженных матриц эффективным способом.

Термин OLAP является часто отождествляют с системами поддержки принятия решений (DSS (Decision Support Systems). А в качестве синонима термина «решения» используют Data Warehousing - хранилища (склады) данных, понимая под этим набор организационных решений, программных и аппаратных средств для обеспечения аналитиков информацией на основе данных из систем обработки транзакций нижнего уровня и других источников

“Склады данных” позволяют обрабатывать данные, накопленные за длительные периоды времени. Эти данные являются разнородными (и не обязательно структурированными). Для “складов данных” присущ многомерный характер запросов. Огромные объемы данных, сложность структуры как данных, так и запросов требует использования специальных методов доступа к информации.

В других источниках понятие Системы Поддержки Принятия Решений (СППР) считается более широким. Хранилища данных и средства оперативной аналитической обработки могут служить одними из компонентов архитектуры СППР.

OLAP всегда включает в себя интерактивную обработку запросов и последующий многопроходный анализ информации, который позволяет выявить разнообразные, не всегда очевидные, тенденции, наблюдающиеся в предметной области.

Иногда различают "OLAP в узком смысле" - это системы которые обеспечивают только выборку данных в различных разрезах, и "OLAP в широком смысле", или просто OLAP, включающей в себя:

- поддержку нескольких пользователей, редактирующих БД.

- функции моделирования, в том числе вычислительные механизмы получения производных результатов, а также агрегирования и объединения данных;

- прогнозирование, выявление тенденций и статистический анализ.

Каждый из этих типов систем требует специфической организации данных, а так же специальных программных средств, обеспечивающих эффективное выполнение стоящих задач.

OLAP-средства обеспечивают проведение анализа деловой информации по множеству параметров, таких как вид товара, географическое положение покупателя, время оформления сделки и продавец, каждый из которых допускает создание иерархии представлений. Так, для времени можно пользоваться годовыми, квартальными, месячными и даже недельными и дневными промежутками; географическое разбиение может проводиться по городам, штатам, регионам, странам или, если потребуется, по целым полушариям.

 

 

OLAP-системы можно разбить на три класса.

1 класс. Наиболее сложными и дорогими из них являются основанные на патентованных технологиях серверы многомерных БД. Эти системы обеспечивают полный цикл OLAP-обработки и либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для анализа данных внешние программы работы с электронными таблицами. Продукты этого класса в наибольшей степени соответствуют условиям применения в рамках крупных информационных хранилищ. Для их обслуживания требуется целый штат сотрудников, занимающихся как установкой и сопровождением системы, так и формированием представлений данных для конечных пользователей. Обычно подобные пакеты довольно дороги. В качестве примеров продуктов этого класса можно привести систему Essbase корпорации Arbor Software, Express фирмы IRI (входящей теперь в состав Oracle), Lightship производства компании Pilot Software и др.

2 класс OLAP-систем - реляционные OLAP-системы (ROLAP). Здесь для хранения данных используются старые реляционные СУБД, а между БД и клиентским интерфейсом организуется определяемый администратором системы слой метаданных. Через этот промежуточный слой клиентский компонент может взаимодействовать с реляционной БД как с многомерной. Подобно средствам первого класса, ROLAP-системы хорошо приспособлены для работы с крупными информационными хранилищами, требуют значительных затрат обслуживания специалистами информационных подразделений и предусматривают работу в многопользовательском режиме. Среди продуктов этого типа - IQ/Vision корпорации IQ Software, DSS/Server и DSS/Agent фирмы MicroStrategy и DecisionSuite компании Information Advantage.

3 класс OLAP-систем - инструменты генерации запросов и отчетов для настольных ПК, дополненные OLAP-функциями или интегрированные с внешними средствами, выполняющими такие функции. Эти весьма развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на ПК конечного пользователя.