Middle Ages and the Renaissance
The attempt to account for magnetic attraction as the working of a soul in the stone led to the first attack of human reason upon superstition and the foundation of philosophy. After the lapse of centuries, a new capacity of the lodestone became revealed in its polarity, or the appearance of opposite effects at opposite ends; then came the first utilization of the knowledge thus far gained, in the mariner's compass, leading to the discovery of the New World, and the throwing wide of all the portals of the Old to trade and civilization.
Shen Kua wrote Dream Pool Essays; Shen also first described the magnetic needle.
In the 11th century, the Chinese scientist Shen Kuo (1031–1095) was the first person to write of the magnetic needle compass and that it improved the accuracy of navigation by employing the astronomical concept of true north (Dream Pool Essays, AD 1088 ), and by the 12th century the Chinese were known to use the lodestone compass for navigation. In 1187, Alexander Neckam was the first in Europe to describe the compass and its use for navigation.
Magnetism was one of the few sciences which progressed in medieval Europe; for in the thirteenth century Peter Peregrinus, a native of Maricourt in Picardy, made a discovery of fundamental importance. The French 13th century scholar conducted experiments on magnetism and wrote the first extant treatise describing the properties of magnets and pivoting compass needles. The dry compass was invented around 1300 by Italian inventor Flavio Gioja.
Archbishop Eustathius of Thessalonica, Greek scholar and writer of the 12th century, records that Woliver, king of the Goths, was able to draw sparks from his body. The same writer states that a certain philosopher was able while dressing to draw sparks from his clothes, a result seemingly akin to that obtained by Symmer in his silk stocking experiments, a careful account of which may be found in the 'Philosophical Transactions,' 1759.
Italian physician Gerolamo Cardano wrote about electricity in De Subtilitate (1550) distinguishing, perhaps for the first time, between electrical and magnetic forces. Toward the late 16th century, a physician of Queen Elizabeth's time, Dr. William Gilbert, in De Magnete, expanded on Cardano's work and invented the New Latin word electricus from ἤλεκτρον (elektron), the Greek word for "amber". Gilbert, a native of Colchester, Fellow of St John's College, Cambridge, and sometime President of the College of Physicians, was one of the earliest and most distinguished of our English men of science—a man whose work Galileo himself thought enviably great. He was appointed Court physician, and a pension was settled on him to set him free to continue his researches in Physics and Chemistry.
It is to Gilbert that we owe the name electricity, which he derived from the Greek word "amber". The first usage of the word electricity is ascribed to Sir Thomas Browne in his 1646 work, Pseudodoxia Epidemica. Gilbert undertook a number of careful electrical experiments, in the course of which he discovered that many substances other than amber, such as sulphur, wax, glass, etc., were capable of manifesting electrical properties. Gilbert also discovered that a heated body lost its electricity and that moisture prevented the electrification of all bodies, due to the now well-known fact that moisture impaired the insulation of such bodies. He also noticed that electrified substances attracted all other substances indiscriminately, whereas a magnet only attracted iron. The many discoveries of this nature earned for Gilbert the title of founder of the electrical science. By investigating the forces on a light metallic needle, balanced on a point, he extended the list of electric bodies, and found also that many substances, including metals and natural magnets, showed no attractive forces when rubbed. He noticed that dry weather with north or east wind was the most favourable atmospheric condition for exhibiting electric phenomena— an observation liable to misconception till the difference between conductor and insulator was understood.
Gilbert's work was followed up by Robert Boyle (1627—1691), the famous natural philosopher who was once described as "father of Chemistry, and uncle of the Earl of Cork." Boyle was one of the founders of the Royal Society when it met privately in Oxford, and became a member of the Council after the Society was incorporated by Charles II. in 1663. He worked frequently at the new science of electricity, and added several substances to Gilbert's list of electrics. He left a detailed account of his researches under the title of Experiments on the Origin of Electricity. Boyle, in 1675, stated that electric attraction and repulsion can act across a vacuum. One of his important discoveries was that electrified bodies in a vacuum would attract light substances, this indicating that the electrical effect did not depend upon the air as a medium. He also added resin to the then known list of electrics.
This was followed in 1660 by Otto von Guericke, who invented an early electrostatic generator. By the end of the 17th Century, researchers had developed practical means of generating electricity by friction with an electrostatic generator, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of electricity.