Физиология зрения

Светочувствительные рецепторы глаза (фоторецепторы) - колбочки и палочки, располагаются в наружном слое сетчатки. Фоторецепторы контактируют с биполярными нейронами, а те в свою очередь - с ганглиозными. Образуется цепочка клеток, которые под действием света генерируют и проводят нервный импульс. Отростки ганглиозных нейронов образуют зрительный нерв.

По выходе из глаза зрительный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхних холмиков пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные (рефлекторные) зрительные центры. От ядер верхних холмиков начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные движения, связанные со зрением. Ядра верхних холмиков также имеют связи с парасимпатическим ядром глазодвигательного нерва, расположенным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую аккомодацию глаза.

Адекватным раздражителем для глаза является свет - электромагнитные волны длиной 400 - 750 нм. Более короткие - ультрафиолетовые и более длинные - инфракрасные лучи глазом человека не воспринимаются.

Преломляющий световые лучи аппарат глаза - роговица и хрусталик, фокусирует изображение предметов на сетчатке. Луч света проходит через слой ганглиозных и биполярных клеток и достигает колбочек и палочек. В фоторецепторах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в Галочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Наружные сегменты погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов.

В сетчатке насчитывают около 7 млн. колбочек и примерно 130 млн. палочек. Более чувствительны к свету палочки, их называют аппаратом сумеречного зрения. Колбочки, чувствительность к свету которых в 500 раз меньше,- это аппарат дневного и цветового видения. Цветоощущение, мир красок доступен рыбам, амфибиям, рептилиям и птицам. Доказывается это возможностью выработать у них условные рефлексы на различные цвета. Не воспринимают цвета собаки и копытные животные. Вопреки прочно установившемуся представлению, что быки очень не любят красный цвет, в опытах удалось доказать, что они не могут отличить зеленого, синего и даже черного от красного. Из млекопитающих только обезьяны и люди способны воспринимать цвета.

Колбочки и палочки распределены в сетчатке неравномерно. На дне глаза, напротив зрачка, находится так называемое пятно, в центре его есть углубление - центральная ямка - место наилучшего видения. Сюда фокусируется изображение при рассматривании предмета.

В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а число палочек возрастает. Периферия сетчатки содержит только палочки.

Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и оно не принимает участия в зрении. Мы обычно не замечаем пробела в поле зрения, но его легко доказать с помощью опыта Мариотта (рис. 130). Если закрыть левый глаз, а правым пристально рассматривать нарисованный на бумаге крестик, медленно приближая рисунок к глазу, то можно заметить, что при определенном расстоянии белое пятно на рисунке исчезает. Это происходит, когда его изображение окажется на слепом пятне. Мы его не замечаем, так как смотрим двумя глазами и на слепое пятно каждого из глаз проецируются различные участки изображения. Кроме того, при рассматривании предметов глаз все время движется скачками по контуру и отдельным местам рисунка. Изображение предмета очень быстро перемещается по сетчатке, а это дает возможность видеть все его части (рис. 131).


Рис. 130. Рисунок для проведения опыта Мариотта (I) и схема хода лучей в этом опыте (II). а - место выхода зрительного нерва; б - центральная ямка, место наилучшего видения


Рис. 131. Запись движений глаза (а) при рассмотрении в течение 2 мин фотографии скульптурного портрета египетской царицы Нефертити (6) (по А. Л. Ярбусу)

Непрерывные, мелкие, скачкообразные движения глаз обусловлены свойствами его рецепторов. Рецепторы передают в мозг информацию не о непрерывно действующем раздражителе, а лишь об изменениях световых сигналов. Импульсы в зрительном нерве возникают только в момент включения и выключения света. A. Л. Ярбус укреплял на роговицу очень маленькую присоску с источником света, движения которого фотографировали. Так как источник света двигался вместе с глазом, то свет падал все время на одни и те же элементы сетчатки. В этом случае испытуемый видит свет только в момент его включения - неподвижное изображение глаз не видит. Лягушка, у которой глаз неподвижен, видит мир затянутым серой пеленой. Зато появление летающей мошки отлично воспринимается рецепторами ее глаза.

Построение изображения на сетчатке. Луч света достигает сетчатки, проходя через ряд преломляющих поверхностей и сред: роговицу, водянистую влагу передней камеры, хрусталик и стекловидное тело. Лучи, исходящие из одной точки внешнего пространства, должны быть сфокусированы в одну точку на сетчатке, только тогда возможно ясное видение. Глаз представляет собой сложную оптическую систему, но оказалось, что для построения изображения в глазу можно пользоваться упрощенной моделью, так называемым o редуцированным глазом.

Редуцированный глаз имеет одну преломляющую поверхность - роговицу и одну среду - стекловидное тело. Узловая точка в редуцированном глазу, т. е. точка оптической системы, через которую лучи идут, не преломляясь, расположена на расстоянии 7,5 мм от вершины роговицы и 15 мм от сетчатки (длина нормального глаза составляет 22,5 мм).

Чтобы построить изображение в редуцированном глазу, надо от двух крайних точек предмета провести через узловую точку два луча. Эти лучи, проходящие через узловую точку без преломления, называются направляющими, а угол, образуемый ими,- углом зрения (рис. 132). Изображение на сетчатке получается действительное, перевернутое и уменьшенное. Несмотря на то что изображение перевернуто, мы воспринимаем предметы в прямом виде. Это происходит потому, что деятельность одних органов чувств проверяется другими. Для нас "низ" там, куда направлена сила земного притяжения. В свое время Страттон поставил очень интересный опыт. Вместо очков он надел стекла с оптической системой, поставившей мир "вверх ногами". Уже через 4 дня он видел ландшафт в прямом виде.


Рис. 132. Построение изображения в глазу, а, б - предмет: а', б' - его перевернутое и уменьшенное изображение на сетчатке; С - узловая точка, через которую лучи идут без преломления, аα - угол зрения

Острота зрения. Остротой зрения называется способность глаза видеть раздельно две точки. Нормальному глазу это доступно, если величина их изображения на сетчатке равна 4 мкм, а угол зрения составляет 1 мин. При меньшем угле зрения ясного видения не получается, точки сливаются. Для объяснения этого явления обратимся к известному факту. Если рассматривать с большого расстояния иллюминированное электрикческими лампочками здание, оно кажется украшенным светящимися линиями. При приближении вместо сплошных линий становятся видны отдельные лампочки. Чем это объясняется? Если падающие на сетчатку лучи возбуждают сплошной ряд колбочек, то глаз видит линию. Если же при этом возбуждаются колбочки, стоящие через одну, то глаз видит отдельные точки.

Для раздельного видения двух точек необходимо, чтобы между возбужденными колбочками находилась минимум одна невозбужденная. Так как диаметр колбочек в месте наибольшей остроты зрения, в центральной ямке пятна, равен 3 мкм, то раздельное видение возможно при условии, если изображение на сетчатке не менее 4 мкм. Такая величина изображения получается, если угол зрения 1 мин.

Остроту зрения определяют по специальным таблицам, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемого помещают на определенном расстоянии от таблицы и находят строку, которую он прочитывает без ошибок.

Острота зрения увеличивается при яркой освещенности и очень низка при слабом свете.

Поле зрения. Все пространство, видимое глазу при неподвижно устремленном вперед взоре, называют полем зрения.

Различают центральное (в области желтого пятна) и периферическое зрение. Наибольшая острота зрения в области центральной ямки. Здесь только колбочки, диаметр их небольшой, они тесно примыкают друг к другу. Каждая колбочка связана с одним биполярным нейроном, а тот в свою очередь - с одним ганглиозным, от которого отходит отдельное нервное волокно, передающее импульсы в головной мозг.

Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии сетчатки колбочки окружены палочками и каждая уже не имеет отдельного пути к мозгу. Группа колбочек заканчивается на одной биполярной клетке, а множество таких клеток посылает свои импульсы к одной ганглиозной. В зрительном нерве примерно 1 млн. волокон, а рецепторов в глазу около 140 млн.

Периферия сетчатки плохо различает детали предмета, но хорошо воспринимает их движения. Боковое зрение имеет большое значение для восприятия внешнего мира. Для водителей различного вида транспорта нарушение его недопустимо.

Поле зрения определяют при помощи особого прибора - периметра (рис. 133), состоящего из полукруга, разделенного на градусы, и подставки для подбородка.


Рис. 133. Определение поля зрения при помощи периметра Форстнера

Испытуемый, закрыв один глаз, вторым фиксирует белую точку в центре дуги периметра впереди себя. Для определения границ поля зрения по дуге периметра, начиная от ее конца, медленно продвигают белую марку и определяют тот угол, под которым она видна неподвижным глазом.

Поле зрения наибольшее кнаружи, к виску - 90°, к носу и кверху и книзу - около 70°. Можно определить границы цветового зрения и при этом убедиться в удивительных фактах: периферические части сетчатки не воспринимают цвета; цветовые поля зрения не совпадают для различных цветов, самое узкое имеет зеленый цвет.

Аккомодация. Глаз часто сравнивают с фотокамерой. В нем имеется светочувствительный экран - сетчатка, на которой с помощью роговицы и хрусталика получается четкое изображение внешнего мира. Глаз способен к ясному видению равноудаленных предметов. Эта его способность носит название аккомодации.

Преломляющая сила роговицы остается постоянной; тонкая, точная фокусировка идет за счет изменения кривизны хрусталика. Эту функцию он выполняет пассивно. Дело в том, что хрусталик находится в капсуле, или сумке, которая через ресничную связку прикреплена к ресничной мышце. Когда мышца расслаблена, связка натянута, она тянет капсулу, которая сплющивает хрусталик. При напряжении аккомодации для рассматривания близких предметов, чтения, письма ресничная мышца сокращается, связка, натягивающая капсулу, расслабляется и хрусталик в силу своей эластичности становится более круглым, а его преломляющая сила увеличивается.

С возрастом эластичность хрусталика уменьшается, он отвердевает и утрачивает способность менять свою кривизну при сокращении ресничной мышцы. Это мешает четко видеть на близком расстоянии. Старческая дальнозоркость (пресбиопия) развивается после 40 лет. Исправляют ее с помощью очков - двояковыпуклых линз, которые надевают при чтении.

Аномалия зрения. Встречающаяся у молодых аномалия чаще всего является следствием неправильного развития глаза, а именно его неправильной длины. При удлинении глазного яблока возникает близорукость (миопия), изображение фокусируется впереди сетчатки. Отдаленные предметы видны неотчетливо. Для исправления близорукости пользуются двояковогнутыми линзами. При укорочении глазного яблока наблюдается дальнозоркость (гиперметропия). Изображение фокусируется позади сетчатки. Для исправления требуются двояковыпуклые линзы (рис. 134).


Рис. 134. Рефракция при нормальном зрении (а), при близорукости (б) и дальнозоркости (г). Оптическая коррекция близорукости (в) и дальнозоркости (д) (схема) [Косицкий Г. И., 1985]

Нарушение зрения, называемое астигматизмом, возникает в случае неправильной кривизны роговицы или хрусталика. При этом изображение в глазу искажается. Для исправления нужны цилиндрические стекла, подобрать которые не всегда легко.

Адаптация глаза. При выходе из темного помещения на яркий свет мы вначале ослеплены и даже можем испытывать боль в глазах. Очень быстро эти явления проходят, глаза привыкают к яркому освещению.

Уменьшение чувствительности рецепторов глаза к свету называется адаптацией. При этом происходит выцветание зрительного пурпура. Заканчивается световая адаптация в первые 4 - 6 мин.

При переходе из светлого помещения в темное происходит темновая адаптация, продолжающаяся более 45 мин. Чувствительность палочек при этом возрастает в 200 000 - 400 000 раз. В общих чертах это явление можно наблюдать при входе в затемненный кинозал. Для изучения хода адаптации существуют специальные приборы - адаптомеры.

Фотохимические процессы в сетчатке. Светочувствительность рецепторов сетчатки обусловлена наличием в них зрительных пигментов. В наружных сегментах палочек находится зрительный пурпур, или родопсин, придающий темноадаптированной сетчатке красный цвет. На свету родопсин выцветает, обесцвечивается и разлагается на ретинин - производное витамина А и белок опсин, палочки при этом становятся неэффективными. В темноте зрительный пурпур восстанавливается. При недостатке витамина А в пище развивается заболевание куриная слепота (гемералопия): человек в сумерках почти не видит.

В колбочках имеется пигмент йодопсин, видимо, несколько его разновидностей.

Восприятие цвета. Цветовое зрение, помимо эстетического удовольствия, радости, испытываемой при рассмотрении цветовой гаммы, имеет большое практическое значение: оно улучшает видимость предметов и обеспечивает дополнительную информацию о них.

Восприятие цвета обеспечивается колбочками. В сумерках, когда функционируют только палочки, цвета не различаются. Существует семь видов колбочек, реагирующих на лучи различной длины и вызывающих ощущение различных цветов. В анализе цвета принимают участие не только рецепторы глаза, но и центральная нервная система.

Цветовая слепота. Нарушение цветового зрения называется дальтонизмом. Им страдают примерно 8% мужчин и 0,5% женщин. Различают форму нарушения цветового зрения, при которой отсутствует восприятие красного цвета - протанопию, зеленого - дейтеранопию и фиолетового - тританопию (встречается редко). Очень редко выявляется полная слепота на цвета - ахромазия. Для таких людей мир окрашен во все оттенки серого, как на бесцветной фотографии. Не воспринимающий красный цвет не отличает светло-красный от темно-зеленого, а пурпурный и фиолетовый от синего; те, у кого отсутствует восприятие зеленого цвета, смешивают зеленые цвета с темно-красными.

Нарушения цветового зрения устанавливают при помощи специальных таблиц. Люди, страдающие дальтонизмом, не могут быть водителями транспорта, так как не различают цветовых дорожных сигналов.

Бинокулярное зрение и его значение. Глаз способен воспринимать размер, форму, объем предмета, рисунок, цвет, яркость, движение, положение в пространстве и расстояние. Большое значение при этом имеет зрение двумя глазами, или бинокулярное зрение.

Стереоскопия, или способность видеть предмет рельефным, объемным, основана на неодинаковом восприятии предмета левым и правым глазом. Левый глаз видит больше с левой стороны предмета, правый - с правой. Это можно доказать, сделав снимок предмета сначала с положения левого глаза, а потом - правого. Снимки будут отличаться. Если лучи, идущие от обоих снимков, совместить при помощи специальных линз, как это делается в стереоскопе, то получается рельефное изображение предмета.

В определении расстояния до предмета играют роль напряжение аккомодации и сведение зрительных осей. При рассматривании близких предметов зрительные оси скрещиваютя на предмете тем сильнее, чем он ближе. Если смотреть на отдаленный предмет, то происходит расхождение зрительных осей, они устанавливаются параллельно. В жизни, проверяя расстояние при помощи других анализаторов, мы выучиваемся определять расстояние на глаз. Если известна величина предмета, то величина его изображения на сетчатке также играет роль в определении расстояния.