Часть II. Психические процессы

Это интересно Сможет ли «искусственный интеллект» заменить мозг человека? Развитие кибернетической науки по-новому заставило человека посмотреть на самого себя. Особенно много вопросов возникло, когда по­явились первые компьютеры. С их появлением люди стали задумываться о возможности созда­ния «искусственного разума», или «искусствен­ного интеллекта». С тех пор прошло достаточ­но много времени, а количество вопросов не только не уменьшилось, но и многократно уве­личилось. Человек стал не только задавать во­просы, но и сравнивать себя с компьютером. Вопрос о том, кто умнее — человек, создав­ший компьютер, или его собственное созда­ние — компьютер, — становится одним из са­мых интересных. Вот как на этот вопрос отве­чают Том Харрингтон и Дениза Квон «Подобно Нарциссу, восхищавшемуся сво­ей собственной красотой, человек с тоской гля­дит в нечто вроде интеллектуального увеличи­тельного стекла и отходит со словами "Да, ты действительно самый разумный из них всех!" Наш мозг в 10 биллионов раз менее эффекти­вен энергетически, чем теоретически он мог бы быть, и его клетки реагируют в тысячи раз мед­леннее, чем ячейки цифрового компьютера, и тем не менее он продолжает находиться под нарциссическим впечатлением от своей соб­ственной работы, обычно относя все недостатки на счет своей огромной сложности. В 1968 году мозг Джона Кемени, заметив, что между ним самим и машиной нет существенной разницы, сделал утверждение, показавшееся в то время здравым. Даже на базе транзисторов... конст­руктивные трудности едва ли позволят сделать машину более чем из миллиона частей. Так что мы можем свободно сказать, что человеческий мозг надолго останется примерно в 10000 раз более сложным, чем самые сложные машины». С тех пор компьютеры развились невероятно. Но мозг по генетическим причинам застрял на обочине интеллектуальной дороги, посколь­ку он мутирует медленно. К счастью, наши ког­нитивные способности не застряли вместе с ним. Каждый день мы встраиваем в компьютеры но­вые мутации и, навязывая им наше собственное направление естественного отбора, развиваем «мыслительную» силу человека. Как может компьютер практически конку­рировать с нами? Лучше сначала спросить, а смог бы компьютер хранить и обрабатывать то коли­чество информации, какое мы сами восприни­маем. Насколько это много? Информацию, вос­принимаемую нами за одно мгновение текущей зрительной сцены, можно оценить, исходя из интенсивности, с которой этот мир стимулиру­ет каждую из ваших 250000000 палочек и кол­бочек. При наличии 100 возможных уровней интенсивности стимуляции каждой из них мы по­лучим достаточно верное повторение воспри­нимаемого мира, так что для каждой колбочки или палочки нам пришлось бы записать по две цифры. Это составило бы 2х250000000 еди­ниц информации — т. е. средняя ванная комна­та, заполненная перфокартами. Обновляя сти-мульную зрительную сцену 100 раз в секунду на протяжении ста лет жизни, мы бы оказались затопленными в таком количестве зрительной информации, какого хватило бы, чтобы заполнить перфокартами куб с ребром в 34 километра. Компью-  

 

сихические познавательные процессы как структурные элементы системы управ­ления в обеспечении адаптации человека с точки зрения кибернетики.

Существенный прорыв в развитии научного представления о человеке произо­шел тогда, когда пришло понимание того, что живой организм обладает таким свойством, как саморегуляция. Этим, вероятно, мы в первую очередь обязаны К. Бернару и У. Кэннону, которые стали говорить о саморегуляции организма как важнейшем условии поддержания постоянства параметров внутренней среды, а следовательно, как об одном из основных условий жизни биологических объек­тов. Дальнейшая разработка данной проблемы привела к тому, что было доказано наличие взаимосвязи между психическими и физиологическими явлениями.

Дело в том, что до середины XIX века головной мозг как носитель психическо­го противопоставлялся всем остальным системам организма, в том числе и спин­ному мозгу, который в то время рассматривался в качестве источника многих фи-

Глава 17. Психические процессы как структурные элементы управления – 419

Это интересно терная память такого объема оказаласьг бы безнадежной, как это случилось в 1968 году, но тусклый свет надежды идет к нам из 1926 года, когда Эмануэль Голд-берг смог записать на микрофильме буквы ве­личиной в один микрон; такая плотность озна­чает, что на большой почтовой марке можно расположить 50 Библий. При такой записи ин­формации наш столетний опыт зрительного вос­приятия уместился бы в кубе из марок с ребром в 20 метров. Объемные голограммы имеют более лег­кий доступ и гораздо большую плотность. Но если бы мы могли хранить информацию так, как это делает природа, ваш зрительный опыт за 100 лет смог бы уместиться в кубике с ребром в 1мм — с булавочную головку. Генетическая информация, необходимая для воссоздания лю­бого человека ... хранимая в виде 4-битового РНК-кода, уместилась бы в слое над одним ног­тем. В таком случае хранение информации, превышающей по объему все, что когда-либо мог собрать мозг, кажется легким, но как быть с обработкой, воспроизведением и передачей? Такие компоненты, как макромолекулярные транзисторы и оптические компьютеры на трансфазерах и технология производства опти­ки с сопряжением фазы скоро превзойдут все, что имеется сегодня. Компьютеры будут более плотными, и в них, возможно, не будет прово­дов, а только световые лучи, которые могут проходить друг сквозь друга. И они будут спо­собны обрабатывать целые поля оптической информации и мгновенно формировать с ней ассоциации, избегая в некотором смысле необ­ходимости в интерактивных соединителях, имеющихся в мозге. Такие компьютеры легко пре­взойдут мозг. Как насчет передачи информа­ции? Новые оптические зеркала с сопряжением фазы позволят нам посылать трехмерные наби­тые информацией голограммы по отдельным стеклянным волокнам. Физики говорят, что по одному стеклянному волокну теоретиче­ски возможно транслировать продолжитель­ный зрительный входной сигнал от примерно 10000 абонентов. Видимо, в неполноценности мозга нет сомнений. Даже по сравнению с су­ществующими машинами он по многим пара­метрам выглядит, как игрушка. Нам только нуж­но побольше людей (и компьютеров), чтобы писать гибкие и тщательно разработанные про­граммы, или сделать специальные компьютеры, которые сами были бы своей программой. По­этому спросим, а хорошо ли умеет мозг ду­мать? Если мы нарисуем длинную ось, отмеря­ющую сложность мышления, то похоже, что мы все-таки сможем поместить себя на ней хоть на бит повыше абака. Может ли абак мыслить? Наверно, нам лучше думать, что да.» Так думают Том Харрингтон и ДенизаКвон,а как думаете вы? Когда вы будете определять свою точку зрения по данному вопросу, поду­майте еще и о том, какая машина, какой самый современный компьютер способен самостоя­тельно (без программы, написанной челове­ком) принимать решения и обладает собствен­ными чувствами. Вероятно, интеллект и способ­ность хранить и обрабатывать информацию — понятия не тождественные По; Солсо Р. Л. Когнитивная психология /Пер. с англ. под ред. В. П. Зинченко. — М: Тривола, 1996

 

зиологических функций, т. е. деятельность головного мозга в большинстве случа­ев никак не связывалась с деятельностью спинного мозга. Постановка вопроса о саморегуляции организма повлекла за собой необходимость найти структуры и механизмы, обеспечивающие эту регуляцию. Одним из первых в качестве систе­мы регуляции внутренней среды организма был назван спинной мозг. Однако экспериментальныеисследования, проведенные Э. Пфлюгером по изучению реак­ций, управляемых лишь спинным мозгом (реакции обезглавленных животных), позволили обнаружить признаки актов психически регулируемого поведения. Было высказано предположение о том, что спинной мозг задействован в осуще­ствлении психических актов. Поэтому не случайно Э. Пфлюгерназвал свою рабо­ту «Сенсорные функции спинного мозга».

С другой стороны, исследования К. Бернара, И. М. Сеченова, Э. Вебера показали, что головной мозг, в свою очередь, участвует не только в осуществлении психических