Фактическое время защитного действия противогаза
Таблица 4.2
Наименование показателя | При относительном покое (2-й режим) | При работе | ||
средней тяжести (5-й режим) | тяжелой (10-й режим) | очень тяжелой (15-й режим) | ||
Легочная вентил | яция, дм^/мин | |||
12,5 | ||||
Фактическое ВЗД по отношению к условному ВЗД при соответствующей температуре окружающей среды, %, не менее: | ||||
минус (40±2)°С | - | - | ||
(25±1)°С | ||||
(40±1)°С | - | - | ||
(60±2)°С | - | - | - |
Лицевая часть, в качестве которой используется маска, служит для присоединения воздуховодной системы аппарата к органам дыхания человека. Воздуховодная система совместно с легкими составляет единую замкнутую систему, изолированную от окружающей среды. В этой замкнутой системе при дыхании, определенный объем воздуха совершает переменное по направлению движение между двумя эластичными элементами: самими легкими и дыхательным мешком. Благодаря клапанам указанное движение происходит в замкнутом циркуляционном контуре: выдыхаемый из легких воздух проходит в дыхательный мешок по ветви выдоха (лицевая часть 1, шланг выдоха 3, клапан выдоха 5, регенеративный патрон 7), а вдыхаемый воздух возвращается в легкие по ветви вдоха (холодильник 8, клапан вдоха 6, шланг вдоха 4, лицевая часть 1). Такая схема движения воздуха получила название круговой.
Рис. 4.1. Принципиальная схема кислородного изолирующего противогаза |
В воздуховодной системе происходит регенерация выдыхаемого воздуха, т.е. восстановление газового состава, который имел вдыхаемый воздух до поступления в легкие. Процесс регенерации состоит из двух фаз: очистки выдыхаемого воздуха от избытка углекислого газа и добавления к нему кислорода.
Первая фаза регенерации воздуха происходит в регенеративном
патроне. Выдыхаемый воздух очищается в регенеративном патроне в результате реакции хемосорбции от избытка углекислого газа сорбентом. Реакция поглощения углекислого газа экзотермическая, поэтому из патрона в дыхательный мешок поступает нагретый воздух. В зависимости от вида сорбента проходящий по регенеративному патрону воздух также либо осушается, либо увлажняется. В последнем случае при дальнейшем его движении в элементах воздуховодной системы выпадает конденсат.
Вторая фаза регенерации воздуха происходит в дыхательном мешке, куда из кислородоподающей системы поступает кислород в объеме, несколько большем, чем потребляет его человек, и определяемом способом кислородопитания данного типа КИП.
В воздуховодной системе КИП происходит также кондиционирование регенерированного воздуха, которое заключается в приведении его температурно-влажностных параметров к уровню, пригодному для вдыхания воздуха человеком. Обычно кондиционирование воздуха сводится к его охлаждению.
Дыхательный мешок выполняет ряд функций и представляет собой эластичную емкость для приема выдыхаемого из легких воздуха, поступающего затем на вдох. Он изготовляется из резины или газонепроницаемой прорезиненной ткани. Для того, чтобы обеспечить глубокое дыхание при тяжелой физической нагрузке и отдельные глубокие выдохи, мешок имеет полезную вместимость не менее 4,5 л. В дыхательном мешке к выходящему из регенеративного патрона воздуху добавляется кислород. Дыхательный мешок является также сборником конденсата (при его наличии), в нем также задерживается пыль сорбента, которая в небольшом количестве может проникать из регенеративного патрона, происходит первичное охлаждение горячего воздуха, поступающего из патрона, за счет теплоотдачи через стенки мешка в окружающую среду. Дыхательный мешок управляет работой избыточного клапана и легочного автомата. Это управление может быть прямым и косвенным. При прямом управлении стенка дыхательного мешка посредственно или через механическую передачу воздействует на избыточный клапан (рис. 4.1) или клапан легочного автомата. При косвенном управлении указанные клапаны открываются от воздействия на их собственные воспринимающие элементы (например, мембраны) давления или разрежения, создающихся в дыхательном мешке при его заполнении или при опорожнении.
Избыточный клапан служит для удаления из воздуховодной системы избытка газовоздушной смеси и действует в конце выдохов. В случае, если работа избыточного клапана управляется косвенным способом, возникает опасность потери части газовоздушной смеси из дыхательный аппарата через клапан в результате случайного нажатия на стенку дыхательного мешка. Для предотвращения этого мешок размещают в жестком корпусе.
Холодильник служит для снижения температуры вдыхаемого воздуха. Известны воздушные холодильники, действие которых основано на отдаче тепла через их стенки в окружающую среду. Более эффективны
холодильники с хладагентом, действие которых основано на использовании скрытой теплоты фазового превращения. В качестве плавящегося хладагента используют водяной лед, фосфорнокислый натрий и другие вещества. В качестве испаряющегося в атмосферу — аммиак, фреон и др. Используется также углекислотный (сухой) лед, превращающийся сразу из твердого состояния в газообразное. Существуют холодильники, снаряжаемые хладагентом только при работе в условиях повышенной температуры окружающей среды.
Принципиальная схема (рис. 4.1) является обобщающей для всех групп и разновидностей современных КИПов. Рассмотрим различные ее варианты и модификации.
В различных моделях КИП применяются три схемы циркуляции воз духа в воздуховодной системе: круговая (рис. 4.1), маятниковая и полумаятниковая. Главное достоинство круговой схемы — минимальный; объем вредного пространства, в который входит помимо объема лицевой части лишь небольшой объем воздуховодов в месте соединения ветвей вдоха и выдоха.
Маятниковая схема отличается от круговой тем, что в ней ветви вдоха и выдоха объединены и воздух по одному и тому же каналу движется попеременно (как маятник) из легких в дыхательный мешок, а затем в обратном направлении. Применительно к круговой схеме (рис. 4.1) это означает, что в ней отсутствуют дыхательные клапаны 5 и 6, шланг 4 и холодильник 8 (в некоторых аппаратах холодильник помещают между регенеративным патроном и лицевой частью). Маятниковую схему циркуляции применяют преимущественно в КИП с небольшим временем защитного действия (в самоспасателях) с целью упрощения конструкции аппарата. Второй причиной использования такой схемы является улучшение сорбции углекислого газа в регенеративном патроне и использовании для этого дополнительного его поглощения при вторичном прохождении воздуха через патрон.
Маятниковая схема циркуляции воздуха отличается увеличении объемом вредного пространства, в которое помимо лицевой части входят дыхательный шланг, верхняя воздушная полость регенеративного патрона (над сорбентом), а также воздушное пространство между отработавшими зернами сорбента в верхнем (лобовом) его слое. С возрастанием высоты отработанного слоя сорбента объем указанной части вредного пространства увеличивается. Поэтому для КИП с маятниковой циркуляцией характерно повышенное содержание углекислого газа во вдыхаемом воздухе по сравнению с круговой схемой. С целью уменьшения объема вредного пространства до минимума сокращают длину дыхательного шланга, что возможно лишь для КИП, расположенных в рабочем положении на груди человека.
Полумаятниковая схема отличается от круговой отсутствием клапана выдоха 5 (рис. 4.1). При выдохе воздух движется через шланг выдоха 3 и регенеративный патрон 7 в дыхательный мешок 9 так же, как в круговой схеме. При вдохе основная часть воздуха поступает в лицевую часть 1 через холодильник 8, клапан вдоха 6 и шланг вдоха 4, а некоторый его объем
проходит через регенеративный патрон 7 и шланг 3 в обратном направлении. Поскольку сопротивление ветви выдоха, содержащей регенеративный патрон с сорбентом, больше, чем ветви вдоха, по ней в обратном направлении проходит меньший объем воздуха, чем по ветви вдоха.
Известны КИП с круговой схемой циркуляции воздуха, в которых кроме основного дыхательного мешка 9 (рис. 4.1), имеется дополнительный мешок, расположенный между клапаном вьщоха 5 и регенеративным патроном 7. Этот мешок служит для уменьшения сопротивления выдоху за счет "сглаживания" пикового значения объемного расхода воздуха.
В начале прошлого столетия были широко распространены аппараты с принудительной циркуляцией воздуха через регенеративный патрон. Они имели два дыхательных мешка и инжектор, питавшийся сжатым кислородом из баллона и просасывавшим воздух через регенеративный патрон из первого мешка во второй. Такое техническое решение было вызвано тем, что в то время регенеративные патроны имели высокое сопротивление потоку воздуха. Принудительная же циркуляция позволяла существенно снизить сопротивление выдоху. В дальнейшем инжекторные аппараты не получили распространения из-за следующих недостатков: сложность конструкции, создание в воздуховодной системе зоны разрежения, способствующей засасыванию в аппарат наружного воздуха. Решающим доводом в отказе от использования инжекторных аппаратов явилось создание более совершенных регенеративных патронов с низким сопротивлением. В период применения инжекторных аппаратов и после отказа от них все другие КИП называли устаревшим термином "легочно-силовые дыхательные аппараты".
Холодильник обязательным элементом КИП. Многие модели устаревшие КИП не имеют его, а охлаждение нагретого в регенеративном патроне воздуха происходит в дыхательном мешке и шланге вдоха. Известны воздушные (или иные) холодильники, расположенные после регенеративного патрона, в дыхательном мешке или составляющие с ним единое конструктивное целое. К последней модификации относится и так называемый "железный мешок", или "мешок наизнанку", представляющий собой герметичный металлический резервуар, являющийся корпусом КИП, внутри которого находится эластичный (резиновый) мешок с горловиной, сообщающийся с атмосферой. Эластичной емкостью в которую поступает воздух из регенеративного патрона, в этом случае является пространство между стенками резервуара и внутреннего мешка. Такое техническое решение отличается большой поверхностью резервуара, служащего воздушным холодильником, и значительной эффективностью охлаждения. Известен также комбинированный дыхательный мешок, одна из стенок которого одновременно является крышкой ранца КИПа — воздушным холодильником. Дыхательные мешки, объединенные с воздушными холодильниками, из-за сложности конструкции, не компенсируемой достаточным охлаждающим эффектом, в настоящее время распространения не имеют.
Избыточный клапан может быть установлен в любом месте воздуховодной системы за исключением зоны, в которую непосредственно пос-
тупает кислород. Однако управление открыванием клапана (прямое или косвенное) должно осуществляться дыхательным мешком. В случае, если поступление кислорода в воздуховодную систему значительно превышает его потребление человеком через избыточный клапан в атмосферу выходит большой объем газа, поэтому целесообразно устанавливать указанный клапан до регенеративного патрона, чтобы уменьшить нагрузку на патрон по углекислому газу. Место установки избыточного и дыхательных клапанов в конкретной модели аппарата выбирается из конструктивных соображений. Имеются КИП, в которых в отличие от схемы (рис. 4.1) дыхательные клапаны установлены в верхней части шлангов у соединительной коробки. В этом случае несколько увеличивается масса элементов аппарата, приходящаяся на лицо человека.
Варианты и модификации принципиальной схемы кислородопо-дающей системы КИП предопределяются в первую очередь способом резервирования кислорода, реализованным в данном аппарате.
4.1.1. Особенности работы КИП с различными способами резервирования кислорода
По способу резервирования кислорода КИП делят на три группы: со сжатым, жидким и химически связанным кислородом. Устройство возду-ховодных систем у них может быть одинаковым, кислородоподающие же системы существенно отличаются друг от друга.
В аппарате со сжатым кислородом в качестве резервуара для его хранения используется стальной баллон 15 с запорным вентилем 14 (рис. 4.1). Рабочее давление в баллоне составляет обычно 20 МПа. В современных аппаратах применяются два способа для основной подачи кислорода: постоянная подача с объемным расходом около 1,5 л/мин (НУ) и легоч-но-автоматическая подача, осуществляемая короткими импульсами с объемным расходом 60-150 л/мин (РУ) в моменты опорожнения дыхательного мешка и создания в нем соответствующего разрежения. Устройство для основной подачи кислорода включает редукционный клапан, снижающий давление кислорода до 0,30,5 МПа и поддерживающий его на постоянном уровне независимо от давления в баллоне, соединенный с редукционным клапаном дозирующий штуцер (дроссель), предназначенный для осуществления подачи кислорода, и легочный автомат, работающий на редуцированном давлении кислорода и управляемый дыхательным мешком прямым или косвенным способом.
Известны модели КИП без легочного автомата с увеличенной, а потому менее экономной подачей кислорода (23 л/мин).
Известны также модели, в которых кислород подается только через легочный автомат. В некоторых подобных конструкциях легочный автомат питается кислородом высокого давления, подаваемым непосредственно от баллона.
Дополнительная подача кислорода осуществляется устройством 12 (рис. 4.1), приводим в действие при необходимости вручную. Данное устройство называется еще аварийным клапаном или байпасом (от английского слова "By-pass", обозначающего обводной канал). Им пользуются для продувки воздуховоднои системы от скопившегося азота и в аварийных случаях при нарушении нормального действия устройства основной подачи кислорода. Поэтому аварийный клапан питается кислородом от баллона по отдельному каналу. В КИП с небольшим временем защитного действия байпас может отсутствовать или питаться непосредственно от редукционного клапана, либо же быть объединенным с легочным автоматом и приводиться в действие нажатием на кнопку, механически связанную с клапаном легочного автомата,
В аппаратах со сжатым кислородом для контроля его запаса в баллоне служит обычный манометр. В аппаратах, находящихся в рабочем положении на спине человека, манометр размещен в поле зрения человека при помощи металлической капиллярной трубки, свернутой в спираль и защищенной от механических повреждений прорезиненным шлангом. Поскольку эта трубка при работе может быть повреждена, во избежание быстрой потери запаса кислорода рекомендуется применять перекрывное устройство капилляра, приводимое в действие вручную или автоматически.
Кислородные изолирующие противогазы со сжатым кислородом благодаря своим принципиальным особенностям и преимуществам по сравнению с другими группами получили в настоящее время наибольшее распространение. К этим особенностям относятся: достаточно экономное расходование запаса кислорода; высокое удельное время защитного действия; благоприятные условия дыхания; постоянная готовность к применению; возможность работы в аппарате отдельными периодами, с выключением и последующим включением, без потери общего времени защитного действия. Манометр в этих аппаратах является идеальным индикатором, в любой момент работы достоверно фиксирующим остаток кислорода, что невозможно осуществить ни в одной модели КИП, относящейся к другим группам. Наконец, накоплен богатый опыт разработки, промышленного выпуска и применения аппаратов со сжатым кислородом, благодаря чему их конструкция достаточно совершенна и весьма надежна.
В аппаратах с жидким кислородом сжиженный газ хранится в металлическом резервуаре 15 (рис. 4.1), стенки которого снаружи покрыты слоем теплоизолирующего материала, не теряющего своих свойств, при низкой температуре. В аппарате отсутствует запорное устройство 14 резервуара, байпас 12 и индикатор 7, а устройство для основной подачи кислорода 13 представляет собой обыкновенный канал, соединяющий резервуар с дыхательным мешком 9. Сжиженный кислород заливается в резервуар непосредственно перед началом, работы в аппарате, после чего в течение всего времени защитного действия он испаряется (газифицируется) и поступает в воздуховодную систему. Резервуар устроен таким образом, при котором исключается попадание жидкой фазы в воздуховодную систему
аппарата. Для этого он заполняется прокаленной асбестовой ватой, которая удерживает сжиженный газ в адсорбированном состоянии.
Из 1 л жидкого кислорода образуется 850 л (НУ) газообразного. Это в четыре раза больше чем можно получить из 1 л газообразного сжатого кислорода при давлении 20 МПа. Масса резервуара для жидкого кислорода, меньше, чем баллона для сжатого газа, поскольку сжиженный газ в аппарате хранится при давлении, близком к атмосферному. Поэтому в КИПах с жидким кислородом создается значительный запас газа при относительно малом объеме резервуара и его небольшой массе.
Жидкий кислород в КИП используется не только для обеспечения дыхания, но также как холодильный агент. Он имеет температуру кипения 183°С. Для газификации 1 кг жидкого кислорода нужно затратить 213 кДж тепла, а затем для нагревания до 20°С образовавшихся 750 л (НУ) газа — еще 185 кДж тепла. Указанный запас "холода", содержащийся в сжиженном кислороде, используется для кондиционирования воздуха в КИП и создания комфортных микроклиматических условий дыхания. В более простых конструкциях для кондиционирования используют лишь запас "холода", содержащийся в уже испарившемся кислороде путем смешения его с воздухом, выходящим из регенеративного патрона. Холодильник 8 в воздуховодной системе (рис. 4.1) в этом случае отсутствует. В таких аппаратах скорость газификации кислорода зависит лишь от интенсивности теплового потока, проникающего в резервуар через слой теплоизоляции стенок, мало зависит от температуры окружающей среды в том ее диапазоне, в котором применяются аппараты, и не зависит от интенсивности выполняемой физической работы. Поэтому время защитного действия аппарата при любых условиях постоянно, исчисляется с момента заливки в резервуар жидкого кислорода и контролируется респираторщи-ком по часам. К аппаратам такого типа относятся выпускавшиеся в Великобритании аппараты "Аэрофор", "Эренчен" и отечественный "Комфорт". В более сложных аппаратах, таких как "Аэрорлокс" (Великобритания), для кондиционирования используется часть скрытого тепла превращения жидкой фазы кислорода в газообразную. Для этого холодильник выполнен как единое целое с резервуаром. В результате дополнительного охлаждения на металлических стенках холодильника, по другую сторону которых испаряется сжиженный кислород, происходит конденсация влаги, содержащейся в газовоздушной смеси, и на вдох поступает охлажденный и подсушенный воздух. В таком аппарате скорость испарения кислорода увеличивается с ростом физической нагрузки.
Для получения значительного охлаждающего эффекта в КИП с жидким кислородом расчетная скорость его испарения и поступления в возду-ховодную систему должна превышать потребность человека в кислороде в 4... 10 раз. При таком режиме избыточный клапан в аппарате работает в конце каждого выдоха, в результате чего в атмосферу удаляется 40...90% газовоздушной смеси от объема поступающего кислорода. Избыточный клапан устанавливают до регенеративного патрона, чтобы через него уда-
лять часть выдыхаемого воздуха, содержащего около 4% углекислого газа, и тем самым частично разгружать регенеративный патрон. Такая подача кислорода в систему позволила отказаться от легочного автомата и байпаса и тем самым упростить конструкцию аппарата.
Главные достоинства КИП с жидким кислородом заключаются в обеспечении оптимальных микроклиматических условий дыхания как при нормальной, так и при высокой температуре окружающей среды, а также в простоте и надежности конструкции. К недостаткам таких аппаратов относятся необходимость их снаряжения запасом кислорода непосредственно перед применением и сразу же обязательное использование всего времени защитного действия. Такой способ подготовки аппарата к работе неприемлем при выезде на пожары первых подразделений. Однако он приемлем при ликвидации затянувшихся пожаров и особенно при производстве работ в условиях высокой температуры.
Для обеспечения нормальной эксплуатации подобных аппаратов в пожарных частях, должен храниться и периодически пополняться запас жидкого кислорода в специальной емкости с вакуумной термоизоляцией; необходимы дьюаровские сосуды для транспортировки кислорода на пожар, т.е. должно быть специализированное и хорошо организованное криогенное хозяйство, аналогичное имеющемуся баллонно-компрессорному хозяйству для обслуживания дыхательный КИП со сжатым кислородом.
По этим причинам КИП с жидким кислородом до настоящего времени не получили широкого распространения. В СССР в 1968 г. была выпущена опытная партия аппаратов с жидким кислородом "Комфорт", конструкция которого обеспечивает высокую надежность в работе и создает благоприятные микроклиматические условия дыхания в аппарате. За рубежом на горноспасательных станциях, имеющих установки для сжижения кислорода, применяют в основном аппарат "Аэрорлокс", серийно выпускаемый в Великобритании.
В аппаратах с химически связанным кислородом последний содержится в гранулированном продукте на базе супероксидов щелочных металлов и выделяется при реакции поглощения продуктом углекислого газа и водяных паров, присутствующих в выдыхаемом воздухе. Указанным кис-лородосодержащим продуктом снаряжается регенеративный патрон аппарата, при прохождении через который выдыхаемый воздух полностью регенерируется. Процесс регенерации включает две фазы: поглощения углекислого газа (и влаги) и добавления выделившегося кислорода. В регенеративном патроне происходит экзотермическая реакция, в результате которой продукт при тяжелой физической нагрузке разогревается до 400°С. Так как выделение кислорода продуктом пропорционально поглощению им углекислого газа, аппарат обеспечивает экономное расходование имеющегося запаса кислорода.
Схема воздуховодной системы аппарата такого типа соответствует схеме, показанной на рис. 4.2, или ее модификациям. Кислородоподающая система отсутствует. Вместо нее в большинстве аппаратов имеется пусковое
устройство для подачи в воздуховодную систему небольшой порции дополнительного кислорода в начальный период работы, когда продукт еще не разогрелся и кислородовыделение происходит недостаточно активно. В качестве источника кислорода в пусковом устройстве обычно используется небольшой брикет химического вещества, выделяющего кислород при разложении. В КИП с временем защитного действия 4 ч и более может быть установлено несколько пусковых устройств для включения в аппарат в начале работы, а затем после кратковременных перерывов. Длительные перерывы в работе (более 1 ч) в аппаратах подобного типа недопустимы, так как после охлаждения разогретого кислородосодержащего продукта процесс выделения им кислорода резко замедляется.
Одна из модификаций воздуховодной системы КИП с химически связанным кислородом, широко применяемая в самоспасателях, показана на рис. 4.2.
Циркуляция воздуха в нем осуществляется по маятниковой схеме: выдыхаемый воздух через лицевую часть, тепловлагообменник, дыхательный шланг, регенеративный патрон с фильтром поступает в дыхательный мешок. При вдохе воздух движется в обратном направлении. Регенерация его происходит частично при поступлении воздуха через патрон в прямом направлении и завершается при прохождении его в обратном направлении. Избыток воздуха удаляется из системы в конце выдохов через избыточный клапан. Пусковое устройство в начале работы выделяет в систему кислород в количестве, достаточном для заполнения дыхательного мешка. Оно приводится в действие автоматически при вскрытии самоспасателя.
Выдыхаемый воздух (рис. 4.2) от лицевой части противогаза по шлангу направляется в регенеративный патрон, снаряженный смесью перекисей щелочных металлов (калия, натрия, лития, цезия и др.). В регенеративном патроне протекает полный цикл регенерации воздуха, т. е. поглощается углекислый газ и влага и выделяется необходимый для дыхания кислород.
Этот процесс описывается уравнениями химических реакций, основные из которых приведены ниже:
2КО2 + СО2 = К2СО3 + 3/2 О2 + 180 кДж/моль;
2КО2 + Н2О = 2КОН + 3/2 О2 + 39 кДж/моль;
2КОН + СО2 = К2СО3 + Н2О + 141 кДж/моль;
КОН + Н2О = КОН • Н2О + 84 кДж/моль;
КОН + 2Н2О = КОН • 2Н2О + 142 кДж/моль.
Регенерированный воздух поступает далее в дыхательный мешок. При вдохе воздух из дыхательного мешка вновь проходит через регенеративный патрон, очищаясь вторично, и по шлангу поступает в легкие человека. Данная схема дыхания является маятниковой.
Особенность КИП с химически связанным кислородом — значительное нагревание и осушение регенерированного воздуха, в результате чего, если не принять специальных мер для его кондиционирования, то на вдох поступит горячий и сухой воздух. Выходящий из регенеративного патрона воздух имеет большой температурный перепад с окружающей средой и вслед-
![]() |
Рис. 4.2. Схема КИП с химически связанным кислородом: 1 —лицевая часть; 2 — шланг дыхательный; 3 — устройство пусковое; 4 — мешок дыхательный; 5 — клапан избыточный; 6 — патрон регенеративный; 7 — фильтр; 8 — тепловлагообменник |
ствие малого содержания водяных паров обладает низкой удельной энтальпией. Он быстро охлаждается за счет отдачи тепла в окружающую среду и поэтому в аппаратах с химически связанным кислородом обдув окружающим воздухом регенеративного патрона и элементов воздуховоднои системы, по которым поступает горячий воздух, и применение воздушных холодильников дают хороший кондиционирующий эффект. Возможности охлаждения горячего воздуха в изолирующих самоспасателях ограничены в связи с их небольшими размерами и необходимостью надежной защиты регенеративного патрона от механических повреждений. Кроме того, при циркуляции воздуха по маятниковой схеме он нагревается вновь при втором проходе через регенеративный патрон. Поэтому температура вдыхаемого воздуха в самоспасателях с химически связанным кислородом выше, чем в аналогичных КИП.
Благодаря значительному осушению воздуха в процессе регенерации его последующее охлаждение позволяет создать в дыхательный аппарате с химически связанным кислородом благоприятные микроклиматические условия дыхания. Несмотря на наличие в регенеративном патроне зоны, имеющей температуру 300...400°С, удельная энтальпия вдыхаемого воздуха в этих дыхательный аппаратах примерно такая же, как в аппаратах с жидким кислородом. Это было подтверждено и при исследованиях экспериментальных образцов аппаратов.
Оптимизация влажности вдыхаемого воздуха достигается путем частичного тепловлагообмена между регенерированным в аппарате сухим воздухом и выдыхаемым, насыщенным водяными парами. Сущность тепловлагообмена в дыхательном шланге при маятниковой схеме движения воздуха по нему и в лицевой части заключается в смешении части выдыхаемого воздуха с воздухом, поступающим из аппарата на вдох. В результате смешения снижается температура вдыхаемого воздуха и повышается его влаго-содержание. С другой стороны, одновременно снижается влагосодержание воздуха, поступающего в регенеративный патрон, что благоприятно сказывается на его действии.
Более интенсивно процесс обмена происходит в специальном тепло-влагообменнике 8 (рис. 4.2), в который помещена насадка из металлической
сетки, фольги или стружки. Более эффективна насадка из гранулированного силикагеля, который сорбирует некоторое количество влаги из выдыхаемого воздуха, а затем десорбирует ее при последующем вдохе. Тепловла-гообменник такого типа может быть применен и при круговой схеме циркуляции воздуха. Однако кондиционирующая способность такого тепловла-гообменника ограничена из-за малого его объема. Увеличение же объема теплообменника недопустимо из-за роста вредного пространства воздухо-водной системы. Поэтому изыскиваются и другие способы оптимизации влажности вдыхаемого воздуха.
К достоинствам КИП с химически связанным кислородом относятся простота конструкции, экономное расходование кислорода и особенно создание благоприятных микроклиматических условий для дыхания. При их применении исключается необходимость иметь в подразделении бал-лонно-компрессорное или криогенное хозяйство.
Существенным недостатком таких КИП является отсутствие надежно конструкции индикатора степени отработки кислородосодержащего продукта, усугубляемое принципиальными трудностями его создания. Вместо индикатора респираторщик вынужден пользоваться часами для определения степени использования и момента окончания гарантированного времени защитного действия аппарата, которое устанавливается для средней физической нагрузки. Поскольку человек не может субъективно количественно оценить тяжесть выполняемой аварийно-спасательной работы, а она иногда может быть несколько выше средней, фактическое время защитного действия устанавливают на 20% выше гарантированного. Из соображений безопасности использовать указанный запас защитной способности не разрешается, в том числе и при легкой работе. Поэтому отсутствие индикатора обесценивает упомянутое достоинство данного способа резервирования кислорода — возможность экономного расходования его запаса.
В качестве индикатора степени отработки кислородосодержащего продукта может быть использован малогабаритный газовый счетчик, установленный на ветви выдоха (или вдоха) воздуховодной системы. Принцип действия такого индикатора основывается на использовании закономерности газообмена человека, согласно которой выделение углекислого газа пропорционально легочной вентиляции. Однако у различных людей наблюдаются отклонения этого соотношения от среднего значения до 20%. С учетом погрешности самого счетчика погрешность определения степени отработки продукта может доходить до 25%. Перспективность применения такого индикатора нуждается в дальнейшем изучении, поскольку других методов индикации до настоящего времени не предложено.
К недостаткам КИП с химически связанным кислородом относятся также невозможность осуществления длительных перерывов в работе, большее сопротивление дыханию, чем в аппаратах со сжатым кислородом, высокая стоимость эксплуатации.
В СССР, предпринимались попытки создания для горноспасательной службы аппарата с химически связанным кислородом со временем
защитного действия не менее 4 ч. Они завершились созданием опытных образцов дыхательный аппаратов РХ-1 и РТ-66, которые подтвердили техническую возможность решения этого вопроса. В обоих образцах были установлены индикаторы степени отработки кислородосодержащего продукта в виде малогабаритных анемометрических газовых счетчиков. Известна также модель аппарата с химически связанным кислородом "Кемокс" (США) с временем защитного действия 1 ч.
В угольной промышленности нашей страны широко используются изолирующие самоспасатели с химически связанным кислородом ШС-7М, ШСС-1 и ШСМ-1. Ими оснащены горнорабочие на всех шахтах, опасных по внезапным выбросам угля, породы и газа, и значительном числе шахт, опасных по газу. Респираторами и самоспасателями ШСМ-2 оснащались вспомогательные горноспасательные команды.
Для обеспечения безопасности людей, при пожарах и проведении аварийно-спасательных мероприятий широко применяются самоспасатели СПИ-20 и СПИ-50.
За рубежом были разработаны изолирующие самоспасатели с химически связанным кислородом аналогичного назначения: "Окси СР 60", "Оксибокс К" фирмы "Драгерверк" (Германия); ССР 120", "ССР 30/100" фирмы "Ауэргезельшафт" (Германия); "Спираль-1" и "Спираль-2" фирмы "Фензи" (Франция).
Известна мало распространенная группа КИП с химически связанным кислородом, которые основаны на его резервировании в твердых брикетах продолговатой цилиндрической формы, изготовленных на базе берталетовой соли. Брикеты получили название хлоратных свечей. Принцип их действия подобен таковому для брикетов пускового устройства 3 (рис 4.2). Кислород выделяется из брикета в результате реакции разложения бертолетовой соли, проходящей при температуре 350-400°С. Для запуска брикет имеет специальное зажигательное приспособление, после приведения в действие которого реакция идет с постоянной скоростью до полного исчерпания запаса кислорода. Указанный брикет заменяет всю кислородоподающую систему. Подача кислорода выбирается заведомо большей, чем максимальное потребление его человеком при тяжелой физической работе. Легочный автомат и байпас в противогазах подобного типа отсутствуют.
Главным достоинством таких аппаратов являются простота и надежность кислородоподающеи системы, состоящей из единственного элемента — хлоратной свечи. Существенный недостаток — невозможность их использования во взрывоопасной среде. Кроме того, несмотря на значительный общий запас кислорода в хлоратной свече, в связи с неэкономным его расходованием удельное время защитного действия этих аппаратов ниже, чем аппаратов со сжатым кислородом.
В России КИП с хлоратными свечами не применяют. За рубежом известна лишь одна модель аппарата подобного типа — изолирующий самоспасатель "Окси-15", выпускаемый фирмой "Драгерверк" (Германия)
и имеющий время защитного действия 15 мин. В течение этого времени хлоратная свеча массой 0,42 кг выделяет в систему аппарата кислород с объемным расходом 4 л/мин. Поглощение углекислого газа осуществляется в регенеративном патроне с известковым сорбентом. Масса самоспасателя составляет 2,5 кг, а удельное время защитного действия равно 6 мин/кг.
Помимо целого ряда положительных качеств, аппараты на химически связанном кислороде имеют ряд недостатков:
отсутствие или несовершенство приборов, указывающих степень сработанности сорбента;
отсутствие регулировки выделения кислорода;
невозможность определить запас кислорода и времени работы в аппарате;
высокая стоимость эксплуатации и невозможность осуществления длительных перерывов в работе.
При увеличении дыхательной нагрузки возрастает сопротивление дыханию в результате спекания сорбента в процессе регенерации. Большой недостаток аппаратов на химически связанном кислороде является их пожароопасность, т. е. возможность загорания при механическом повреждении корпуса и высыпании кислородосодержащего вещества.
4.2. Сущность регенерации воздуха в кислородных изолирующих противогазах
4.2.1. Краткие сведения о сорбционных процессах
и сорбентах
Первая фаза регенерации выдыхаемого воздуха в КИП заключается в очистке его от углекислого газа, осуществляемой в регенеративном патроне в результате физико-химического процесса сорбции (от лат. sorbeo — поглощаю).
Сорбция— это поглощение газообразных или растворенных веществ сорбентами — твердыми темами или жидкостями. Различают следующие основные виды сорбции: адсорбцию, абсорбцию, капиллярную конденсацию и хемосорбцию. Поглощение газов и паров твердыми сорбентами, как правило, протекает при наличии двух или более из указанных процессов, однако один из них является основным, определяющим.
Первые три из названных видов сорбции — процессы физические, обусловленные силами взаимного притяжения молекул сорбента и поглощаемого вещества.
Адсорбция— поглощение вещества поверхностным слоем поглотителя (адсорбента).
Абсорбция— поглощение, сопровождающееся диффузией поглощаемого вещества вглубь поглотителя (адсорбента) с образованием раствора, т.е. поглощение всем объемом поглотителя. В некоторых случаях,
помимо адсорбции, поглощение газа происходит в результате капиллярной конденсации его в порах твердого тела.
Хемосорбция— процесс сорбции, при котором поглощаемое вещество и поглотитель (хемосорбент) взаимодействуют химически, в результате чего образуется новое химическое соединение.
Сорбенты, применяемые для очистки воздуха от вредных газов в СИЗОД, — это твердые гранулированные или дробленые тела. Наиболее распространенными типами адсорбентов являются активированный уголь, силикагель, алюмогель, цеолиты. Типы хемосорбентов рассматриваются ниже.
Из общих физических свойств сорбентов наиболее важным является их пористая структура. Макро- и микропоры пронизывают гранулы сорбента во всех направлениях и обеспечивают большую поверхность его соприкосновения с очищаемым воздухом. Адсорбенты характеризуются значительной поверхностью пор; удельная поверхность пор у активированного угля равна 300-500 м2/г, у силикагеля 300-700 м2/г; диаметр пор составляет 106-104 мм. Пористость хемосорбентов значительно меньше; например, удельная поверхность пор ХП-И составляет 8-12 м2/г. Благодаря самой природе физического процесса адсорбции и большой активной поверхности адсорбента он поглощает газ практически мгновенно. Адсорбция — обратимый процесс: все поглощенное вещество может быть удалено в результате обратного процесса десорбции, в связи с чем адсорбенты легко регенерируются. Процесс адсорбции экзотермический, но количество теплоты, выделяемое при этом, невелико и близко по значению к теплоте конденсации.
Процесс хемосорбции протекает медленнее, чем адсорбции, так как контакт между поглощаемым газом и активной поверхностью хемо-сорбента затрудняется образующейся пленкой продуктов реакции, а сама поверхность пор меньше, чем у адсорбента. Хемосорбент в процессе поглощения газа выделяет большее количество теплоты, что приводит к значительному нагреву очищаемого воздуха и самого поглотителя. Теплота реакции поглощения некоторых сорбентов (например, кислородосодержащего продукта) столь велика, что приводит в некоторых случаях к спеканию и даже плавлению гранул.
Наиболее распространен тип поглотительного патрона с осевым прохождением через него очищаемого воздуха. Элементарный слой поглотителя на входе в патрон называют лобовым, а аналогичный слой в конце патрона — замыкающим. В теории сорбции существует понятие "работающий слой поглотителя". Это слой сорбента, ограниченный двумя перпендикулярными к направлению движения газовоздушной смеси плоскостями, который активно поглощает газ. В начале работающего слоя сорбент максимально насыщен поглощаемым газом, по ходу потока степень насыщения его уменьшается, а в конце слоя процесс сорбции только начинается.
Длина работающего слоя при прочих равных условиях зависит от скорости процесса сорбции. В поглотительном патроне с адсорбентом она может быть меньше, чем общая длина рабочей части патрона от лобового до замыкающего слоя сорбента. При установившемся патроне существуют
три зоны: зона с полностью отработанным поглотителем; работающий слой, перемещающийся по направлению движения потока газовоздушной смеси, и зона, в которой поглощение еще не происходит. Когда работающий слой достигает замыкающего слоя патрона, начинается проскок поглощаемого газа, т.е. неполное его поглощение. Такая работа сорбента в патроне называется послойной схемой его отработки.
В поглотительном патроне с хемосорбентом зона с полностью отработанным поглотителем не образуется. Длина работающего слоя увеличивается в течение всего допроскокового периода, и он при этом не "отрывается" от лобового слоя. Когда фронт работающего слоя патрона достигает замыкающего, начинается проскок поглощаемого газа. Однако и в этот момент лобовой слой может быть не насыщен газом. Полное его насыщение может произойти, если патрон долгое время будет работать в проскоковом периоде. Такая работа сорбента в патроне называется схемой работы всей массы поглотителя.
Следовательно, при работе сорбента в поглотительном патроне существуют два периода: допроскоковый и проскоковый. Длительность работы в проскоковом периоде ограничивается предельно допустимым проскоком, который устанавливается нормативными документами. При обеих схемах отработки к концу допроскокового периода в патроне остается некоторое количество не полностью отработанного сорбента, уменьшающееся в проскоковом периоде. Чем больше общая длина слоя сорбента в патроне при прочих равных условиях, тем меньше доля неотработанной его части по отношению ко всей массе сорбента, выше коэффициент его полезного использования и больше длительность работы, или время защитного действия. Однако увеличение общей длины слоя поглотителя приводит к повышению сопротивления патрона проходящему воздуху.
Поэтому при разработке поглотительных патронов (для КИП — регенеративных патронов) одним из основных вопросов является выбор оптимальной величины слоя поглотителя.
Существенной особенностью хемосорбентов по сравнению с адсорбентами является их высокая поглотительная способность на единицу массы.
Известные хемосорбенты способны поглощать углекислый газ в количестве значительно большем, чем адсорбенты. Поэтому для очистки выдыхаемого воздуха от углекислого газа в КИП применяются только хемосорбенты.
В их состав входят основное вещество, вступающее в химическую реакцию поглощения углекислого газа, и добавки, придающие им необходимые физические свойства и активизирующие реакцию. Сорбционные свойства хемосорбента характеризуются тремя показателями: стехиомет-рической, статической и динамической активностями, которые измеряются количеством поглощенного вещества (в объемных или массовых единицах) на единицу массы сорбента.
Стехиометрической активностью называется максимальное, теоретически возможное количество вещества, поглощаемое единицей массы
активной части хемосорбента, т.е. основного вещества (без добавок и технологических примесей). Она определяется из уравнения химической реакции.
Статической активностью называется количество вещества, поглощенное единицей массы хемосорбента к моменту достижения сорбцион-ного равновесия, при котором дальнейшее поглощение прекращается.
Статическая активность устанавливается экспериментально при определенной концентрации поглощаемою газа в воздухе и температуре последнего. Ее значение всегда меньше стехиометрической активности. Динамической активностью называется количество вещества, поглощенное единицей массы сорбента до момента появления проскока в динамических условиях, т.е. в реальном регенеративном патроне, через который проходит реальный поток воздуха, содержащего определенное количество углекислого газа. В отдельных случаях динамическую активность выражают как время защитного действия патрона до появления проскока поглощаемого вещества. Однако в практике большее распространение получила характеристика хемосорбента, называемая удельной сорбционной емкостью в динамических условиях.
Удельная сорбционная емкость — объем газа, поглощенного единицей массы хемосорбента при работе в динамических условиях до значения проскока газа, установленного нормативными документами для данного регенеративного патрона или КИП. Ее значение всегда меньше статической активности и является основной определяющей характеристикой хемосорбента при работе его в конкретных динамических условиях.
На удельную сорбционную емкость оказывают влияние три группы факторов, определяемые соответственно характеристиками хемосорбента, регенеративного патрона и нагрузки, т.е. потока воздуха, содержащего углекислый газ. Повышенную сорбционную емкость имеет хемосорбент с высокими значениями стехиометрической, статической активностей и с большой поверхностью пор. Уменьшение размера гранул также приводит к увеличению сорбционной емкости, но не за счет увеличения их поверхности, а в связи с ростом скорости диффузии сорбируемого вещества внутрь гранул. Увеличению удельной сорбционной емкости способствуют большая длина слоя хемосорбента в патроне, а также равномерное распределение потока воздуха по поперечному сечению патрона. Увеличение средней или мгновенной скорости потока воздуха приводит к уменьшению удельной сорбционной емкости.
Известны методы расчета поглотительных и регенеративных патронов, основанные на теории динамической активности сорбентов. Однако в расчетные формулы входят коэффициенты, которые могут быть определены только экспериментально для конкретных динамических условий. Применение же коэффициентов, полученных при несколько иных условиях, позволяет получить лишь ориентировочные данные. Поэтому разработка регенеративных патронов, как правило, проводится путем анализа работы имеющихся аналогов, выбора по его результатам параметров патрона, а затем экспериментальной их отработки на динамической установке, имитирующей дыхание человека.
К хемосорбентам углекислого газа предъявляют следующие основные технические требования: они должны обладать высокой удельной сорб-ционной емкостью; сопротивление потоку проходящего через них воздуха должно быть как можно ниже; увеличение удельной энтальпии очищаемого воздуха должно быть небольшим; сорбент должен быть прочным на истирание и при работе не выделять веществ в виде газа, пара или аэрозолей, раздражающих органы дыхания. Кроме того, хемосорбент должен длительное время сохранять свои поглотительные свойства и изготавливаться из недефицитного и дешевого материала.
Технические требования к регенеративным патронам должны учитывать технические параметры используемого в них сорбента. Одно из основных требований к регенеративному патрону заключается в соответствии его защитной способности запасу сжатого кислорода, полезно расходуемого для дыхания.
В регенеративных аппаратах со сжатым кислородом применяют два вида хемосорбентов углекислого газа: известковый на основе гидроксида кальция Са(ОН)2 и щелочной на основе гидроксида натрия NaOH. Известен также литиевый хемосорбент LiOH, обладающий существенно большей удельной сорбционной емкостью, чем первые. Однако он не получил широкого распространения главным образом из-за его дефицитности и высокой стоимости сырья.
Особое место среди хемосорбентов занимает кислородосодержащий продукт на основе супероксидов щелочных металлов КО2 или NaO2, который не только поглощает углекислый газ, но и выделяет кислород, полностью регенерируя выдыхаемый воздух.
4.2.2. Известковый поглотитель углекислого газа
Основой известкового поглотителя углекислого газа является гидро-ксид кальция Са(ОН)2, или гашеная известь. Реакция поглощения углекислого газа указанным веществом имеет следующий вид:
Са(ОН)2 + СО2 = СаСО3 + Н2О + qp (4.1)
Эта реакция экзотермическая и протекает с выделением одного моля воды на один моль поглощенного углекислого газа, кроме того, выделяется часть влаги, содержащейся в поглотителе, в результате чего воздух, проходящий через регенеративный патрон, нагревается и увлажняется. Молярная теплота реакции составляет 80-115 кДж/моль. Исследования, проведенные во ВНИИГД, показали, что qp = 101 кДж/моль СО2. Температура в зоне реакции регенеративного патрона при нормальной температуре окружающей среды равна 5О...55°С.
В нашей стране в качестве хемосорбента СО2 в регенеративных противогазах длительное время применялся только химический известковый поглотитель ХП-И по ГОСТ 6755-88Е. По отдельным заказам согласно временным техническим условиям выпускался мелкозернистый химпогло-титель ХП-И М с таким же химическим составом.
ХП-И представляет собой гранулированный продукт (цилиндрические гранулы диаметром около 4 мм) белого или серого цвета, изготовленный их маломагнезиальной извести и гидроксида натрия, содержит не менее 95% гидроксида кальция и 4% гидроксида натрия (в пересчете на сухое вещество). Основную фракцию (90%) составляют гранулы размером от 2,8 до 5,5 мм.
Таблица4.3 Технические характеристики химического поглотителя известкового (ХП-И)
№ п/п | Наименование параметров | Величина |
1. | Концентрация углекислого газа на выходе из патрона (хемо-сорбционная способность), %, не более: в первые 40 минут определения через 120 минут от начала определения | од 0,5 |
Максимальное сопротивление во время определения хемо-сорбционной способности, Па (мм вод.ст.), не более | 147 (15,0 | |
3. | Максимальная температура воздуха на выходе из регенеративного патрона во время определения хемосорбционной способности, °С, не более | 50,0 |
4. | Прочность на истирание, %, не менее | 65,0 |
5. | Диаметр зерен по фракциям, мм, %: 5,5...6,5, не более 2,8...5,5, не менее 1...2,8, не более менее 1 (пыль), не более | 5 90 5 0,6 |
6. | Содержание влаги, % | 16...21 |
7. | Содержание связанного диоксида углерода, % по массе, не более |
Поглотитель ХП-И М отличается лишь диаметром гранул, равным 2 мм, и фракционным составом: основную фракцию (94%) составляют гранулы размером от 1 до 2,8 мм.
В состав химпоглотителя кроме основного вещества входят добавки: гидроксид натрия и вода. Гидроксид натрия повышает динамическую активность поглотителя при малых концентрациях углекислого газа в очищаемом воздухе и будучи сильно гигроскопичным веществом поддерживает необходимую влажность поглотителя. Влага, содержащаяся в ХП-И, способствует протеканию реакции поглощения углекислого газа. Увеличение и уменьшение содержания воды в поглотителе относительно нормы снижает его динамическую активность. Помимо добавок в ХП-И входит (как технологическая примесь) некоторое количество карбоната кальция СаСО3, являющегося исходным продуктом при производстве ХП-И. Карбонат кальция представляет собой также конечный продукт реакции поглощения СО2. Поэтому по мере отработки ХП-И содержание СаСО3 в нем увеличивается. Максимально допустимое содержание карбоната кальция в свежем поглотителе принимается в пересчете на массу содержащеюся в нем углекислого газа по отношению к общей массе поглотителя.
ХП-И поставляется и хранится у потребителя в герметично закрытых и опломбированных металлических барабанах по 80 кг в каждом. Гарантийный срок хранения — один год, после чего поглотитель в каждом барабане подвергается повторному анализу на содержание влаги и связанного углекислого газа. Если указанные параметры соответствуют нормам, срок хранения поглотителя продлевается еще на год.
В отличие от других типов хемосорбентов СО2 ХП-И не теряет сорб-ционных свойств после кратковременного пребывания на открытом воздухе. Это позволило в свое время перейти к использованию в КИП переснаряжающихся регенеративных патронов, заполняемых свежим хемосорбен-том взамен отработанного непосредственно в подразделениях. Перед снаряжением в патрон ХП-И просеивают на сите с диаметром отверстий 3 мм. Все фракции поглотителя, которые остаются в сите, снаряжаются в патрон. Такой отсев позволяет очистить поглотитель от пыли, образовавшейся в процессе его транспортировки, удаление же мелких фракций уменьшает сопротивление дыханию.
ХП-И — достаточно прочный сорбент в отношении истирания и образования пыли, которая в случае ее попадания в дыхательные пути могла бы вызвать их раздражение. Прочность поглотителя на истирание проверяется при его приемке на заводе-изготовителе. Сущность методики проверки заключается в размоле порции ХП-И во вращающемся барабане с пятью стальными шарами в течение определенного времени. Затем образовавшуюся пыль отсеивают, а уровень прочности сорбента определяют по отношению количества не размолотого ХП-И к исходному.
При транспортировке снаряженных КИП в регенеративных патронах все же образуется незначительное количество пыли. Однако установка специального защитного фильтра после патрона не нужна. Воздух, выходящий из регенеративного патрона, полностью насыщен влагой, которая, конденсируясь в дыхательном мешке, смачивает и осаждает пыль ХП-И, проникающую из патрона.
В процессе поглощения углекислого газа ХП-И не изменяет цвет и внешний вид, не оплывает и не спекается. В полностью отработанном ХП-И содержание СО2 увеличивается до 25...27%, содержание влаги уменьшается до 4...8%, а общая масса поглотителя возрастает на 6...8% по отношению к исходной. Повторное использование регенеративного патрона с полностью отработанным ХП-И запрещается.
Так как в составе ХП-И необходимо содержание влаги, то реакция сорбции СО2 этим поглотителем может происходить только при положительной температуре. Замороженный поглотитель непригоден для применения, в связи с чем хранение готовых к применению регенеративных патронов с ХП-И при температуре ниже 0°С не допускается. При эксплуатации КИП с ХП-И при отрицательной температуре необходимо, чтобы к началу работы температура поглотителя была выше 0°С. В процессе работы она должна поддерживаться на этом уровне за счет теплоты экзотермической реакции сорбции СО2. Для противогазов с ХП-И без специальных
мер защиты регенеративного патрона нижний предел температуры окружающего воздуха, при котором допускается их эксплуатация с соблюдением специальных мер предосторожности, равен — 20°С.
В КИП применяются преимущественно прямоточные регенеративные патроны, в которых газовоздушная смесь движется в одном направлении вдоль оси патрона (рис. 4.3). Такой патрон прост по конструкции и создает минимальное сопротивление потоку газа. Он используется во всех отечественных и в большинстве зарубежных моделей противогазов как при круговой, так и при маятниковой схемах циркуляции воздуха.
В некоторых КИП, исходя из конструктивных соображений или соображений выбора оптимальной высоты слоя поглотителя, применяют регенеративные патроны с радиальным направлением потока. Такой патрон содержит те же элементы, что и прямоточный, а поглотитель в нем заключен между двумя перфорированными или сетчатыми перегородками цилиндрической формы. Газовоздушная смесь движется сначала вдоль оси патрона, затем поворачивает на 90° в радиальном направлении, проходит через слой поглотителя, вторично поворачивает на 90°, направляясь к выходу вдоль оси патрона. Эти патроны отличаются увеличенной поверхностью рабочего слоя в направлении движения воздуха. Патрон с радиальным направлением потока применен, например, в КИП с жидким кислородом "Аэрорлокс".
ХП-И имеет достаточно высокую сте-хиометрическую активность — 300 л/кг (СУ), т.е. на 8% больше щелочного сорбента, статическая же активность составляет около 70% стехиометрической.
Такие же показатели имеет мелкозернистый поглотитель ХП-И М.
Воздух, выходящий из патрона с известковым сорбентом, труднее поддается кондиционированию в воздуховодной системе дыхательный аппарата, чем сухой и более нагретый воздух из патрона со щелочным сорбентом.
Рис 4.3. Регенеративный патрон РП-8: 1 — заглушки; 2 — скоба; 3 — пружина; 4 — подвижная стенка; |
дартном патроне (ГОСТ 6755-88Е). Это пря- 5 _ зерна Хп-И; 6 — цилиндр; |
моточный цилиндрический патрон с высотой камеры для поглотителя 19 см и площадью поперечного сечения 94 см2. Определение про- |
7 — пробка; 8 — нижняя крышка; 9 — металлическая сетка; 10 — верхняя крышка |
Удельная сорбционная емкость хемо-сорбента зависит от характеристик самого поглотителя, патрона и нагрузки. Выше приведены значения удельной сорбционной емкости, полученные при его испытании в стан-
водили для большого числа партий поглотителя при режиме № 5 до проскока СО2, равного 1,5%. Удельная сорбционная емкость ХП-И в динамических условиях составляла 125...150 л/кг (СУ), или 58...71% статической активности. Различные партии ХП-И по сорбционной емкости отличаются друг от друга, поэтому при определении необходимого заряда ХП-И в регенеративном патроне с заданным временем защитного действия следует ориентироваться на нижний ее предел т.е. 125 л/кг (СУ).
Уменьшение длины слоя и увеличение удельного объемного расхода газовоздушной смеси приводит к снижению удельной сорбционной емкости поглотителя. Следовательно, с уменьшением массы поглотителя в патроне снижается и его удельная сорбционная емкость. Для каждого значения массы сорбента при заданном дыхательном режиме существует свое предельное значение емкости. Действительно, уменьшение массы поглотителя сокращает длину его слоя или площадь поперечного сечения патрона или же оба параметра одновременно. Уменьшение же каждого из них однозначно снижает удельную сорбционную емкость.
Особенностями ХП-И являются не дефицитность сырья, из которого изготовляется поглотитель, и относительно низкая стоимость самого хемо-сорбента (на порядок ниже, чем щелочного сорбента).
Известковый хемосорбент применяется в регенеративных противогазах и самоспасателях с временем действия 2 ч и менее выпускаемых в Великобритании, Франции, США, а также в Германии.
4.2.3. Щелочной поглотитель углекислого газа
Среди гидроксидов щелочных металлов практическое применение для очистки воздуха от углекислого газа в КИП получил гидроксид натрия NaOH. Это химическое соединение является основой натриевого хемо-сорбента, называемого обычно щелочным. Реакция поглощения углекислого газа гидроксидом натрия имеет вид:
2NaOH + СО2 = Na2CO3 + Н2О + 117 кДж (4.2)
Поскольку гидроксид натрия — сильно гигроскопичное вещество, одновременно идет реакция поглощения воды:
NaOH + Н2О = NaOH + Н2О + 13 кДж (4.3)
Температура в зоне реакции регенеративного патрона при нормальной температуре окружающей среды увеличивается до 1ОО...13О°С.
Стехиометрическая активность, определенная по первой реакции, составляет 278 л/кг (СУ), а по обеим реакциям в сумме — 185 л/кг (СУ). Анализ динамики сорбции гидроксидом натрия реакционной влаги и влаги, содержащейся в выдыхаемом воздухе, показывает, что реальная стехиометрическая активность находится между двумя приведенными значениями.
При реакции поглощения углекислого газа и влаги гранулы натриевого поглотителя оплывают, с них стекает щелочь, поэтому хемосорбент размещают в регенеративном патроне в ячейках проволочных сеток. Конструкция регенеративного патрона сложнее, чем для известкового
![]() |
поглотителя (рис. 4.4).
![]() |
Рис 4.4. Регенеративный патрон фирмы "Медицинтехник" (Германия): 1 — корпус; 2 — штуцер входной; 3, 4 — гофрированные сетки соответственно с низкими и высокими гофрами; 5 — поглотитель; 6 — плоская сетка; 7 — штуцер выходной |
Снаряжается он на заводе в условиях, исключающих попадание на поглотитель влаги из атмосферного воздуха, и поступает к потребителям с герметичными и опломбированными заглушками. Патрон — одноразового действия и переснаряжению не подлежит; после полной или частичной отработки заменяется новым.
По этим причинам сорб-ционные свойства и особенности натриевого щелочного
поглотителя СО2 необходимо рассматривать как соответствующие свойства конкретных типов регенеративных патронов. Патроны с натриевым поглотителем СО2 выпускаются фирмами "Медицинтехник" и "Дрегерверк" (Германия).
В СССР в 1958 г. был разработан натриевый сорбент СО2 и изготовлена опытная партия щелочных патронов. В настоящее время работы по созданию отечественного щелочного патрона и освоению его промышленного выпуска возобновлены.
В табл. 4.4 приведены основные технические данные натриевого щелочного поглотителя и регенеративных патронов, выпускаемых фирмой "Медицинтехник".
Таблица 4.4
Наименование параметров | Характеристика |
Химический состав сорбента, %: | |
ЫагСОз | 18,3 |
СаО | 0,8 |
АЬОз | 2,6 |
прочие добавки и примеси | 0,2 |
NaOH | (остальное до 100%) |
Характеристика патрона: | |
масса поглотителя, кг | 1,7 |
общая масса патрона, кг | 3,05 |
сопротивление патрона при легочной вентиляции | 25-30 (2,5-3,0) |
(РУ) 60 л/мин, Па (мм вод.ст) | |
время защитного действия, ч, не менее | |
объем СОг, поглощаемого патроном, л (СУ) | 310-320 |
удельная сорбционная емкость сорбента, л/кг (СУ) | 182-188 |
Натриевый сорбент представляет собой гранулы неправильной формы светло-серого цвета с голубым или коричневым оттенком ("Меди") или серовато-коричневого цвета (фирмы "Дрегерверк").
Регенеративный патрон "Меди" 9x18-28 предназначен для противогазов с временем защитного действия 4 ч (или имеющих запас кислорода в баллоне 400 л), цифры 9x18-28 в маркировке патрона означают, что патрон имеет овальное поперечное сечение с осями размером 9 и 18 см и длину 18 см. Патрон (рис. 4.3) представляет собой металлический корпус с размещенными в нем 46 проволочными сетками. Часть сеток имеют гофры-канавки, параллельные малой оси овала, остальные сетки — плоские. Плоские сетки располагаются после каждой гофрированной или группы гофрированных сеток. Сорбент помещен между гофрами сеток и образует в патроне 25 элементарных слоев. В нерабочем положении входной и выходной штуцеры патрона герметично закрыты заглушками с пломбами во избежание проникновения внутрь окружающего влажного воздуха.
Регенеративный патрон фирмы "Дрегерверк" отличается числом слоев поглотителя (в нем их 16) и конфигурацией сеток. Все сетки имеют гофры большой глубины, которые расположены под острым углом по отношению к большой оси овала. Гофры каждой последующей сетки являются как бы зеркальным отображением их в предыдущей сетке, в связи с чем гофры всего пакета сеток образуют букву X. Всего в патроне расположено 36 гофрированных и плоских сеток.