Сложные проценты
Сложные проценты - сложное начисление, при котором проценты начисляются несколько раз за период и не выплачиваются, а накапливаются на сумму основного долга. Этот механизм особенно эффективен при среднесрочных и долгосрочных кредитах.
После первого года (периода) наращенная сумма определяется по формуле (1), где i будет являться годовой ставкой сложных процентов. После двух лет (периодов) наращенная сумма S2 составит:
S2 = S1(1 + it) = P (1 + it) · (1 + it) = P (1 + it)2.
Таким образом, при начислении сложных процентов (после n лет (периодов) наращения) наращенная сумма определяется по формуле
S = P (1 + i t)n , (3)
где i – ставка сложных процентов, выраженная в коэффициенте; n – число начислений сложных процентов за весь период.
Коэффициент наращения в данном случае рассчитывается по формуле
Кн = (1 + i t)n , (4)
где Кн – коэффициент наращения первоначальной стоимости, ден.ед.
Доля расчетов с использованием сложных процентов в финансовой практике достаточно велика. Расчеты по правилу сложных процентов часто называют начисление процентов на проценты, а процедуру присоединения начисленных процентов – их реинвестированием или капитализацией.
Рис. 1.Динамика увеличения денежных средств при начислении простых и сложных процентов
Из-за постоянного роста базы вследствие реинвестирования процентов рост первоначальной суммы денег осуществляется с ускорением, что наглядно представлено на Рис. 1.
В финансовой практике обычно проценты начисляются несколько раз в году. Если проценты начисляются и присоединяются чаще (m раз в год), то имеет место m-кратное начисление процентов. В такой ситуации в условиях финансовой сделки не оговаривают ставку за период, поэтому в финансовых договорах фиксируется годовая ставка процентов i, на основе которой исчисляют процентную ставку за период ( ). При этом годовую ставку называют номинальной, она служит основой для определения той ставки, по которой начисляются проценты в каждом периоде, а фактически применяемую в этом случае ставку
(( )mn) – эффективной, которая характеризует полный эффект (доход) операции с учетом внутригодовой капитализации.
Наращенная сумма по схеме эффективных сложных процентов определяется по формуле
S = P (1+ )mn , (5)
где i – годовая номинальная ставка, %; (1+ )mn – коэффициент наращения эффективной ставки; m – число случаев начисления процентов за год; mn – число случаев начисления процентов за период.
Следует отметить, что при периоде, равным 1 году, число случаев начисления процентов за год будет соответствовать числу случаев начисления процентов за весь период. Если, период составляет более 1 года, тогда n (см. формулу (3)) – будет соответствовать этому значению.
Начисление сложных процентов также применяется не только в случаях исчисления возросшей на проценты суммы задолженности, но и при неоднократном учете ценных бумаг, определении арендной платы при лизинговом обслуживании, определении изменения стоимости денег под влиянием инфляции и т. д.
Как говорилось выше, ставку, которая измеряет относительный доход, полученный в целом за период, называют эффективной. Вычисление эффективной процентной ставки применяется для определения реальной доходности финансовых операций. Эта доходность определяется соответствующей эффективной процентной ставкой.
Эффективную процентную ставку можно рассчитать по формуле
Iэф = (1+ )mn – 1 . (6)
Расчет эффективной процентной ставки в финансовой практике позволяет субъектам финансовых отношений ориентироваться в предложениях различных банков и выбрать наиболее приемлемый вариант вложения средств.