Нейтрализация выпускных газов
Снижения уровня выбросов токсичных веществ с выпускными газами двигателей можно достичь воздействием на рабочий процесс с целью уменьшения образования этих веществ в процессе сгорания, оборудованием двигателя системами нейтрализации выпускных газов и применением топлив, в продуктах сгорания которых содержится меньше токсичных веществ. При оценке эффективности перечисленных способов исходят из стремления получить выбросы токсичных веществ в допустимых пределах без снижения мощности и экономичности двигателя при минимальном повышении стоимости силовой установки с двигателем.
Применяемые в настоящее время способы воздействия на рабочий процесс для снижения токсичности двигателя приводят, как правило, к уменьшению его мощности и увеличению расхода топлива, а кроме того, в двигателях с принудительным воспламенением не обеспечивают пока допустимого уровня токсичности выбросов. Поэтому установки с двигателями оборудуют системами нейтрализации, в которых предусматривается снижение концентрации токсичных веществ воздействием на рабочий процесс и применением устройств для нейтрализации и очистки газов в выпускном трубопроводе — нейтрализаторов и очистителей.
В термических и каталитических нейтрализаторах происходят химические реакции, в результате чего уменьшается концентрация газовых компонентов токсичных веществ. Механические и водяные очистители применяют для очистки выпускных газов от механических частиц (сажи) и капелек масла. Последние используются редко.
Термический нейтрализатор представляет собой камеру сгорания, которая размещается в выпускном тракте двигателя для дожигания продуктов неполного сгорания топлива (СН и СО). Он может устанавливаться на месте выпускного трубопровода и выполнять его функции. Реакции окисления СО и СН протекают достаточно быстро при температуре свыше 830° С и при наличии в зоне реакций несвязанного кислорода. Термические нейтрализаторы применяют на двигателях с принудительным воспламенением, в которых необходимая для эффективного осуществления термических реакций окисления температура обеспечивается без подачи дополнительного топлива. И без того высокая температура выпускных газов у этих двигателей повышается в зоне реакции в результате догорания части СН и СО, концентрация которых значительно выше, чем у дизелей.
Рис. Термический нейтрализатор-дожигатель: 1 — выпускные патрубки двигателя; 2 — выход выпускных газов из нейтрализатора; 3 — подвод дополнительного воздуха
Термический нейтрализатор состоит из корпуса с подводящими (выпускными) патрубками и одной или двух жаровых труб-вставок из жаропрочной листовой стали. Хорошее перемешивание дополнительного воздуха, необходимого для окисления СН и СО, с выпускными газами достигается интенсивным вихреобразованием и турбулизацией газов при перетекании через отверстия в трубах и в результате изменения направления их движения системой перегородок. Для эффективного догорания СО и СН требуется достаточно большое время, поэтому скорость газов в нейтрализаторе задается невысокой, вследствие чего объем его получается сравнительно большим.
Чтобы предотвратить падение температуры выпускных газов в результате теплоотдачи к стенке* выпускной трубопровод и нейтрализатор покрывают тепловой изоляцией, устанавливают тепловые экраны в выпускных каналах, размещают нейтрализатор по возможности ближе к двигателю. Несмотря на это, для прогрева термического нейтрализатора после пуска двигателя требуется значительное время. Для сокращения этого времени повышают температуру выпускных газов, что достигается обогащением горючей смеси и уменьшением угла опережения зажигания, хотя и то, и другое повышает расход топлива. К таким же мерам прибегают для поддержания стабильного пламени на переходных режимах работы двигателя. Уменьшению времени до начала эффективного окисления СН и СО способствует также жаровая вставка.
В каталитических окислительных нейтрализаторах (при наличии избыточного кислорода в выпускных газах) с катализаторами из благородных металлов — платины, платины и палладия, платины и родия — достаточно высокая скорость окисления СО и СН обеспечивается при сравнительно невысоких температурах, значительно меньших, чем в термическом нейтрализаторе. Оксид углерода окисляется в СОг при 250...300° С, углеводороды, бензопирен, альдегиды — при 400...450° С; при этом у выпускных газов почти исчезает неприятный запах. При температуре 580° С сгорает сажа. Катализаторы на базе обычных металлов уступают катализаторам из благородных металлов по активации процессов окисления при невысоких температурах, поэтому в двигателях их не применяют.
Для увеличения поверхности контакта с газами катализатор наносится тонким слоем на поверхность носителя из кремнезема или глинозема в виде шариков или на поверхность монолитного носителя с ячейками. Носитель с катализатором помещают в корпус, который может быть объединен с глушителем шума выпуска. Выпускные трубопроводы и корпус каталитического нейтрализатора обмазывают теплоизоляцией, чтобы, как и в термических нейтрализаторах, уменьшить теплоотдачу от выпускных газов.
Рис. Комбинированный каталитический нейтрализатор: а — с шариковым носителем; б — с ячеистым монолитным носителем; 1 — лопатки; 2 — пробка; 3 — камера восстановления NO; 4 — подвод дополнительного воздуха; 5 — камера окисления СН и СО
В нейтрализаторах для легковых автомобилей применяют платину и палладий. В случае использования этилированного бензина активность катализатора быстро падает ввиду отложений свинца.
В каталитическом и термическом дожигателях для окисления СН и СО требуется несвязанный кислород в выпускных газах, поэтому в системы нейтрализации двигателей с принудительным воспламенением, которые могут работать на богатых смесях, входит устройство для подвода дополнительного воздуха к выпускным газам. Количество дополнительного воздуха составляет приблизительно 25 % расхода воздуха двигателем.
При наличии кислорода в выпускных газах и при их достаточно высокой температуре окисление СН и СО происходит и в выпускном трубопроводе. Поэтому дополнительный воздух целесообразно подводить в выпускной канал в головке цилиндра. Подвод дополнительного воздуха и тепловая изоляция выпускных трубопроводов позволяют заметно уменьшить выбросы СН и СО и тогда, когда нейтрализатор не применяют.
В случае установки термического или окислительного каталитического нейтрализатора выбросы СН и СО удается снизить до установленных норм. Концентрация оксидов азота не меняется или изменяется очень незначительно. Для уменьшения концентрации оксидов азота в системах с окислительными нейтрализаторами осуществляют рециркуляцию выпускных газов. С этой целью выпускные газы (до 10 % объема свежего заряда) отбирают из выпускного трубопровода, охлаждают и направляют во впускную систему.
В настоящее время двигатели с принудительным воспламенением на легковых автомобилях оборудуют чаще всего системами нейтрализации, которые включают каталитический окислительный нейтрализатор, систему подачи дополнительного воздуха и систему рециркуляции выпускных газов. Степень нейтрализации СН достигает в окислительном нейтрализаторе с платино-палладиевым катализатором 85 %, а СО — 93 %. Степень нейтрализации оценивают отношением разности концентраций токсичных компонентов на входе в нейтрализатор и на выходе из него к их концентрации на входе.
Каталитические нейтрализаторы с восстановительной средой используют иногда в системах для уменьшения выбросов оксидов азота. Восстановление N0 с образованием N2 возможно при достаточно высоком содержании СО в выпускных газах: 2N0 + 2C0 = N2 + 2C02.
Каталитический нейтрализатор с восстановительной средой целесообразно применять в комбинации с окислительным каталитическим нейтрализатором для окисления СН и СО. Дополнительный воздух подводится в этом случае в окислительный нейтрализатор, который устанавливают после восстановительного.
В каталитическом нейтрализаторе с катализатором из благородных металлов можно снизить до установленных норм выбросы всех трех токсичных газовых составляющих (СН, СО и N0), но лишь при условии, что состав горючей смеси отличается от стехиометрического не более чем на 1 %. Такие нейтрализаторы называют трехкомпонентными. Наилучшие результаты получены с платинородиевыми катализаторами. Современные карбюраторы и системы впрыскивания бензина с топливными насосами не обеспечивают такого узкого диапазона состава смеси на всех рабочих режимах, поэтому требуется специальная система регулирования подачи топлива.
Рис. Комбинированный нейтрализатор выпускных газов: 1 — термический нейтрализатор; 2 — каталитический нейтрализатор; 3 — клапан; 4 и 6 — датчики; 5 — замедлитель импульсов; 7 — глушитель
Возможны также комбинации термического нейтрализатора с каталитическим в двух вариантах: 1) первым устанавливается каталитический нейтрализатор для нейтрализации N0, а вторым — термический для дожигания СН и СО; 2) первым устанавливается термический, а вторым — окислительный каталитический для дожигания СН и СО. Дополнительный воздух для окисления СН и СО подводится во второй нейтрализатор.
34.Экономическая оценка экологического ущерба от выбросов АТ.
Негативное воздействие автомобильного транспорта характеризуется не только объемными физическими параметрами и процентными соотношениями, но и его суммарной величиной, а также наносимым ущербом.
Экологический ущерб - это изменение полезности окружающей среды вследствие воздействия на нее негативных факторов. Он оценивается как затраты общества, связанные с изменением окружающей среды, и складывается из следующих затрат:
- дополнительные затраты общества в связи с изменениями в окружающей среде;
- затраты на возврат окружающей среды в прежнее состояние;
- дополнительные затраты будущего общества в связи с безвозвратным изъятием части дефицитных природных ресурсов
Для оценки ущерба окружающей среде используют следующие базовые величины:
- затраты на снижение загрязнения;
- затраты на восстановление окружающей среды;
- рыночная цена;
- дополнительные затраты из-за изменения качества окружающей среды;
- затраты ни компенсацию риска для здоровья людей;
- затраты на дополнительный природный ресурс для разбавления сбрасываемого потока до безопасной концентрации загрязняющего вещества.
Ущерб обществу от загрязнения окружающей среды отражается на деятельности отдельных объектов, оказывающихся под его воздействием:
- население;
- объекты жилищно-коммунального и промышленного хозяйства;
- сельскохозяйственные угодья;
- водные ресурсы;
- лесные ресурсы.
Идея экономической оценки ущерба достаточно проста, однако значительные трудности вызывает ее практическое воплощение. Первая стадия оценки предполагает анализ объемов и структуры выбросов. Затем определяются концентрации загрязняющих атмосферу (водоемы, почву) веществ. При этом используется информация, полученная с помощью систем экологического мониторинга, или производится расчет рассеивания вредных примесей. Данные о концентрации вредных примесей позволяют оценить воздействие загрязняющих веществ на окружающую среду и хозяйственную деятельность человека в натуральных показателях, которые впоследствии выражаются в денежных эквивалентах. Простая в идеальном плане схема определения ущерба сопряжена с большими трудностями, когда речь идето ее реализации на практике. Это объясняется рядом причин, основные из которых следующие:
- как правило, невозможно определить степень «вклада» данного загрязнителя в нанесение ущерба (в силу множества участников и сложного взаимодействия компонентов в биосфере);
-невозможно отделить участников загрязнения данного региона от влияния, связанного с региональным, трансграничным и трансконтинентальным переносом загрязнителей;
-влияние загрязнителя проявляется не сразу, и сегодняшний ущерб может быть в немалой степени порожден загрязнением прошлых периодов;
-влияние загрязнения может выходить не только за горизонт периода экономических расчетов, но и за границы социальных оценок - продолжительности активной деятельности двух последующих поколений.
Кроме того, далеко не все отрицательные последствия загрязнения можно выразить в стоимостной форме. Поэтому расчетный экономическийущербявляется заниженным по сравнению с реально существующим.
Как показывают оценки ущерба от загрязнения окружающей среды транспортными объектами, подавляющая доля (до 78%) ущерба обусловлена загрязнением атмосферы. Доля ущерба от загрязнения атмосферы, водных объектов, размещения отходов, связанная с деятельностью автотранспорта, составляет около 8%.
27.Транспортно-дорожный комплекс является мощным источником загрязнения природной среды. Из 35 млн.т вредных выбросов 89% приходится на выбросы автомобильного транспорта и предприятий дорожно-строительного комплекса. Существенна роль транспорта в загрязнении водных объектов. Кроме того, транспорт является одним из основных источников шума в городах и вносит значительный вклад в тепловое загрязнение окружающей среды.
Выбросы от автомобильного транспорта в России составляют около 22 млн.т в год. Отработанные газы двигателей внутреннего сгорания содержат более 200 наименований вредных веществ, в т.ч. канцерогенных. Нефтепродукты, продукты износа шин и тормозных колодок, сыпучие и пылящие грузы, хлориды, используемые в качестве антиобледенителей дорожных покрытий, загрязняют придорожные полосы и водные объекты.
Трудно представить себе сегодня человеческую цивилизацию без автомобиля. В развитых странах он стал не только основным транспортным средством, но и частью быта. Естественное стремление человека к свободе передвижения, усложнение функций в производственной деятельности и сфере услуг, наконец, сама жизнь в больших городах, городских агломерациях - все это обуславливает рост числа легковых автомобилей индивидуального пользования и увеличение объема грузовых перевозок. Уровень автомобилизации уже давно стал одним из основных показателей экономического развития страны, качества жизни населения. При этом в понятие «автомобилизация» включают комплекс технических средств, обеспечивающих движение: автомобиль и дорогу.
Однако достижения научно-технического прогресса приносят людям не только пользу, но и вред. «За все надо платить», - говорит древ-няя мудрость. Плата за автомобиль - наше здоровье, наша жизнь. Это вероятность дорожно-транспортных происшествий, несчастных случаев. Это неизбежность вреда от загрязнения окружающей среды выбросами отработавших газов, транспортного шума, иных физиче-ских воздействий. От них приходится страдать всем людям, даже тем, кто никогда не пользуется автомобилем. И не только людям - всей природе. Создает эти вредные воздействия на среду, конечно не дорога, а автомобиль. Дорога защищает среду от автомобиля. Долг инженера-проектировщика, строителя, эксплуатационника в том, чтобы сделать эту защиту эффективнее и дешевле.
Мы не призываем жить без автомобиля. Хотелось бы только, чтобы наша плата за это достижение ХХ-го века была более адекватной его полезности.
I. Основные проблемы