Химический состав продовольственных товаров

Продовольственные товары товары, произведенные из продовольственного сырья и используемые в пищу в натуральном или переработанном виде.

Продовольственные товары подразделяют на следующие группы:

• товары массового потребления – выработанные по традиционным технологиям и предназначенные для питания основных групп населения;

• лечебные (диетические) и лечебно-профилактические товары – специально созданные для профилактического и лечебного питания, они характеризуются измененными химическим составом и физическими свойствами, в эту группу входят витаминизированные, низкожирные (содержание жира снижено на 33%), низкокалорийные (менее 40 ккал/100 г), с повышенным содержанием пищевых волокон, уменьшенным количеством сахара, холестерина, хлористого натрия и др.;

• продукты детского питания - - специально созданные для питания здоровых и больных детей до трехлетнего возраста.

Качество продовольственных товаров совокупность свойств, отражающих способность товара обеспечивать органолептические характеристики, потребность организма в пищевых веществах, безопасность его здоровья, надежность при производстве и хранении.

Медикобиологические требования к качеству продовольственных товаров – комплекс критериев, определяющих пищевую ценность и безопасность продовольственного сырья и продовольственных товаров.

Безопасность продовольственных товаров отсутствие токсического, канцерогенного, мутагенного или любого другого неблагоприятного воздействия продовольственных товаров на организм человека при употреблении их в общепринятых количествах. Гарантируется установлением и соблюдением регламентируемого уровня содержания загрязнителей химического, биологического или природного происхождения.

Пищевая ценность понятие, отражающее всю полноту полезных свойств продовольственного товара, включая степень обеспечения физиологических потребностей человека в основных пищевых веществах, энергию и органолептические достоинства. Характеризуется химическим составом продовольственного товара с учетом его потребления в общепринятых количествах.

Биологическая ценность показатель качества пищевого белка, отражающий степень соответствия его аминокислотного состава потребностям организма в аминокислотах для синтеза белка.

Энергетическая ценность – количество энергии в килокалориях (кДж), высвобождаемой из продовольственного товара в организме для обеспечения его физиологических функций.

Биологическая эффективность – показатель качества жировых компонентов товара, отражающих содержание в них полиненасыщенных (незаменимых) жирных кислот.

Фальсификация продовольственных товаров и продовольственного сырья изготовление и реализация поддельных продовольственных товаров и продовольственного сырья, не соответствующих своему названию и рецептуре.

Идентификация продовольственных товаров и продовольственного сырья установление соответствия продовольственных товаров и продовольственного сырья их наименованиям согласно нормативной документации на конкретный вид товара (продовольственного сырья).

Срок хранения (реализации) промежуток времени, в течение которого при соблюдении определенных условий продовольственное сырье, продовольственные товары сохраняют качество, установленное стандартом или другим нормативным документом.

Упаковочные и вспомогательные материалы материалы, контактирующие с продовольственным товаром на этапах технологического процесса производства, транспортировки, хранения и реализации.

Для изучения потребительских свойств продовольственных товаров и понимания процессов, происходящих в них на стадиях производства и хранения, необходимо знать прежде всего их химический состав и свойства входящих в них химических веществ.

По химическому составу и функциональному назначению органические и неорганические вещества, входящие в состав продовольственных товаров, делятся на энергетические, пластические (вода, белки, жиры, углеводы, минеральные вещества) и обменно-функциональные (витамины, азотистые, экстрактивные вещества и ферменты).

Вода

 

Вода имеет важное значение для существования всех живых организмов. Она участвует в процессах кровообращения, дыхания, пищеварения и др. Вода содержится во всех пищевых продуктах независимо от их происхождения. От содержания воды зависят качество и стойкость при хранении и транспортировании продовольственных товаров. В продовольственных товарах вода находится в свободном и связанном состоянии.

Свободная вода – это вода, обладающая теми же свойствами, что и чистая вода. Она находится в виде мельчайших капель в клеточном соке и межклеточном пространстве. В ней растворены органические и минеральные вещества. Она легко удаляется при высушивании и замораживании. Плотность ее около единицы, температура замерзания – около 0 °С. Свободная вода создает благоприятные условия для развития микроорганизмов и деятельности ферментов. Поэтому товары, содержащие много воды, являются скоропортящимися. Однако большая часть воды в продовольственных товарах находится в связанном состоянии и удерживается тканями с различной силой.

Связанная вода находится в микрокапиллярах, адсорбируется внутриклеточными системами и удерживается коллоидами белков и углеводов. Она не является растворителем, имеет более низкую температуру замерзания, чем свободная вода, не усваивается микроорганизмами и положительно влияет на сохраняемость продуктов. Удаление связанной воды из продукта приводит к потере его качества (черствение хлеба).

Продовольственные товары должны содержать воду в определенных пределах. Так, содержание ее (в %): в зерне и муке – 12-15, печеном хлебе – 23–48, свежих плодах – 75–90, сушеных – 12–25, свежих овощах – 65–90, молоке – 87–90, сливочном масле – 16–35. Очень мало воды в сахаре – 0,1–0,4%, растительных маслах – 0,1–0,2 и животных жирах – 0,2-0,3%. Уменьшение содержания воды ниже этих пределов в свежих плодах и овощах приводит к их увяданию, а увеличение воды в сахаре-песке вызывает потерю сыпучести и даже утечку. Хлористый натрий в чистом виде является совершенно негигроскопичным товаром, однако вследствие хорошей растворимости в воде он может увлажняться и даже растворяться при непосредственном соприкосновении с влажными объектами или водой. Мука и крупа благодаря капиллярно-пористой структуре способны удерживать значительно больше влаги (до 14%), не теряя сыпучесть, и внешнюю сухость при хранении и перевозках.

Таким образом, различные продовольственные товары обладают разной гигроскопичностью, что имеет важное значение для разработки рациональных условий их упаковки, хранения и реализации.

Питьевая вода. Вода является средой, в которой протекают все обменные процессы организма человека. Суточная потребность в воде взрослого человека составляет около 2 л. Если без пищи человек выдерживает несколько недель, то без воды – несколько суток.

Воду следует рассматривать как распространенный продукт питания, используемый как непосредственно, так и при производстве продовольственных товаров. Поэтому к воде предъявляют высокие санитарно-гигиенические требования. Кроме того, вода активно участвует в физико-химических и биохимических процессах, лежащих в основе формирования качества продовольственных товаров.

С развитием цивилизации появились серьезные проблемы, связанные с уменьшением запасов пресной воды, загрязнением ее различными чужеродными веществами. Основными источниками загрязнения воды являются сточные воды (бытовые и промышленных предприятий), поверхностный сток с загрязненных территорий, свалки, водный транспорт, воздушные выбросы, неконтролируемое использование в сельском хозяйстве средств защиты и удобрений.

Загрязнения могут быть химического и бактериологического происхождения. Наиболее часто в воде встречаются тяжелые металлы и их соединения, полициклические ароматические углеводороды, пестициды, бензолы, нитраты и фосфаты, органические вещества.

Особую опасность представляет бактериологическое загрязнение водоемов, грунтовых и питьевых водоемов, в результате которого в воде обнаруживаются кишечные палочки, вирусы, бактерии. .

Загрязнение питьевой воды может происходить и путем выщелачивания веществ из водопроводных труб. В результате в питьевую воду попадают свинец, медь и асбестовые волокна, обладающие канцерогенностью.

Входной контроль воды перед подачей ее в водопроводную сеть проводится в соответствии с требованиями ГОСТ 2761-84. Согласно ГОСТу питьевая вода должна соответствовать следующим требованиям: быть прозрачной, бесцветной, без запаха и постороннего привкуса, иметь определенный химический состав и не содержать болезнетворных микроорганизмов. При отстаивании питьевой воды в течение суток при 15-20 ºС не должен образовываться осадок.

Состав воды должен соответствовать следующим нормативам:

минерализация общая (сухой остаток), мг/л 1000

жесткость общая, ммоль/л 7,0

водородный показатель 6,5–8,5

железо, мг/л 1,0

марганец, мг/л 0,1

фтор, мг/л 1,5

цинк, мг/л 1,0

мышьяк, мг/л 0,05

медь, мг/л 3,0

свинец, мг/л 0,1

пестициды, общее количество, мг/л –

полициклические ароматические углеводороды, мкг/л –

К воде, применяемой в производстве продовольственных товаров, предъявляют такие же требования, как и к питьевой. Для отдельных пищевых производств воду подвергают дополнительной обработке, главным образом для ее умягчения (ликеро-водочное производство, пивоварение, крахмальное, маслодельное и сыроваренное производство).

Минеральные вещества

 

Минеральные вещества относятся к незаменимым, хотя они и не являются источником энергии. Они играют важную роль в различных обменных процессах организма: выполняют пластическую функцию, участвуя в построении костной ткани, регуляции водно-солевого и кислотно-щелочного равновесия, входят в состав ферментных систем. Попадая в организм в больших количествах, они могут проявлять токсические свойства, поэтому содержание некоторых неорганических соединений в продовольственных товарах регламентируется медико-биологическими требованиями и санитарными нормами качества. Обычно минеральных веществ в продовольственных товарах содержится примерно 0,5-0,7% съедобной части.

В зависимости от содержания в продовольственных товарах все минеральные вещества делят условно на три группы:

• макроэлементы – содержание в продовольственных товарах более 1 мг% (калий, натрий, кальций, магний, фосфор, хлор, железо);

• микроэлементы – содержание не превышает 1 мг% (йод, фтор, медь, цинк, марганец, мышьяк, бром, алюминий, никель, кобальт и др.);

• ультрамикроэлементы – содержание в микрограммах и менее на 100 г продукта (ртуть, золото, уран, радий, свинец и др.).

При сжигании продуктов органические вещества сгорают, а минеральные остаются в виде золы (зольные вещества). Состав золы и ее количество в различных продуктах неодинаковы и колеблются от 0,2 до 7,0%. В продуктах растительного происхождения зольных веществ больше, чем в продуктах животного происхождения. Например, содержание золы (в %): в муке – 0,5-1,9; свежих плодах - 0,3-1,2; чае – 5,4-7,7; молоке – 0,6-0,9; мясе – 0,8-1,1; рыбе – 0,7-1,9; свежих овощах – 0,4-1,8.

Макроэлементы. Кальций– щелочно-земельный металл, широко распространенный в природе. В организме кальций выполняет пластические и структурные функции, придает стабильность клеточным мембранам, принимает участие в осуществлении межклеточных связей, обеспечивающих слипание клеток при тканеобразовании, является активатором ряда ферментов и гормонов, важнейшим компонентом системы свертывания крови.

В продовольственных товарах кальций встречается в форме хлористых фосфорно-кислых, щавелево-кислых соединений, а также в соединении с белками, жирными кислотами и др. Содержание кальция в продовольственных товарах следующее (в мг/100 г): в молоке – 90–180, цельномолочных продуктах (кефир, сметана, творог и др.) – 85-150, твердых сырах – 850–1100, плавленых сырах – 430-760, масло – 13–18.

Фосфорнеметалл, биологический спутник кальция. Наиболее богаты фосфором молоко и молочные продукты, в которых отмечается наиболее оптимальное соотношение кальция и фосфора. Достаточное количество фосфора содержится в мясе, рыбе, зернобобовых. Из растительных продуктов фосфор усваивается хуже, чем из животных (соответственно 40 и 70%). Органические соединения фосфора являются центральным звеном энергетического обмена. Кроме того, все превращения углеводов в ходе гликолиза осуществляются в фосфорилированной форме. Содержание фосфора в продовольственных товарах следующее (в мг/100 г): в мясе – 180, рыбе – 250, молоке – 90, хлебных изделиях – 200, картофеле – 60, овощах – 40, фруктах и ягодах – 20.

Магнийотносится к наиболее распространенным щелочноземельным металлам. Его соединения широко используются в различных отраслях народного хозяйства. Физиологическая функция магния обусловлена его участием в качестве кофермента в ряде важнейших ферментативных процессов. Содержание магния в продовольственных товарах следующее (в мг/100 г): в рыбе – 30, мясе – 25, молоке – 13, хлебных изделиях – 80, картофеле – 23, овощах – 20, фруктах и ягодах – 15.

Натрий содержится в продовольственных товарах в незначительном количестве, поэтому основным источником его в организме человека является поваренная соль. Натрий играет важную роль в процессах внутриклеточного и межклеточного обмена. Осмотическое давление плазмы крови зависит в основном от содержания в ней хлористого натрия. Он играет важную роль в регуляции водного обмена организма. Ионы натрия вызывают набухание коллоидов тканей и тем самым способствуют задержанию в организме связанной воды.

Содержание натрия в продовольственных товарах следующее (в мг/100 г): в рыбе – 80, мясе – 70, молоке – 50, хлебных изделиях – 15, картофеле – 30, овощах – 20, фруктах и ягодах – 25.

Калий в значительных количествах присутствует в продуктах растительного происхождения. Калия много в сухих фруктах (курага, урюк, изюм, чернослив), горохе, фасоли, картофеле, мясе, молоке и рыбе. Он регулирует водный обмен в организме человека, усиливая выделение жидкости; улучшает работу сердца. В организме человека калий участвует в ферментативных реакциях, образовании буферных систем, предотвращающих сдвиги реакции среды (рН). Уменьшая водоудерживающую способность белков, снижая их гидрофильность, калий способствует выведению из организма не только воды, но и натрия. Содержание калия в продовольственных товарах следующее (в мг/100 г): в рыбе – 300; мясе – 350; молоке – 150; хлебных изделиях – 200; картофеле – 570; овощах – 200; фруктах и ягодах – 250.

Хлор участвует в регуляции осмотического давления в тканях и в образовании соляной кислоты в желудке. Основной источник поступления хлора в организм – поваренная соль, добавляемая в пищу. Содержание хлора в продовольственных товарах следующее (в мг/100 г): в мясе – 60, молоке – 110, рыбе – 160, хлебных изделиях – 25, картофеле – 60, овощах – 40, фруктах и ягодах – 2.

Железо в организме человека и животных входит в состав важнейших органических соединений – гемоглобина крови, миоглобина, некоторых ферментов – каталазы, пероксидазы, цитохромокоидазы и др. В состав гемоглобина крови входит 2/3 железа организма. Значительное количество железа находится в селезенке и печени. Содержание железа в продовольственных товарах следующее (в мг/100 г): в хлебе ржаном – 3,0; пшеничном – 1,6; фасоли – 7,9; картофеле – 0,9; моркови – 0,6; капусте – 1,3; яблоках – 2,0; печени – 8,4; твороге – 7,7; говядине – 3,0; яйце – 3,0; молоке коровьем – 0,2; рыбе – 5,0.

Сера входит в состав почти всех белков тела человека, и особенно много ее в аминокислотах – цистеине, метионине. Она участвует в образовании витамина В, (тиамин), инсулина (гормон) и других веществ. Источником серы являются горох, овсяная крупа, сыр, яйца, мясо и рыба.

Микроэлементы. Йод необходим для нормальной деятельности щитовидной железы, функция которой нарушается при недостаточном поступлении йода. Наибольшее количество йода сконцентрировано в морской воде, морских водорослях, рыбе и нерыбных объектах промысла. Меньше всего йода в продуктах в горных районах, поэтому здесь необходима йодированная соль. Содержание в продовольственных товарах йода следующее (в мкг/100 г): в рыбе – 50, мясе – 10, молоке – 4, картофеле, овощах – 10, хлебобулочных изделиях и фруктах – 5.

Фтор принимает участие в формировании зубов и костного скелета. Наибольшее количество фтора сосредоточено в костях – 200–490 мг/кг и зубах – 240–660 мг/кг. Содержание фтора в сырых продуктах растительного происхождения составляет (в мкг/100 г): в молоке – 18, мясе – 40, рыбе – 500. Вода является основным источником поступления фтора в организм человека, причем фтор воды усваивается лучше, чем фтор продовольственных товаров. Содержание фтора в питьевой воде колеблется от 1 до 1,5 мг/л.

Медь участвует в процессах кроветворения, стимулирует окислительные процессы и тесно связана с обменом железа. Она входит в состав ферментов (лактазы, аскорбиноксидазы, цитохромоксидазы) в качестве металлокомпонента. В наибольшем количестве медь содержится в говяжьей печени и бобовых культурах. Повышенное содержание меди может вызывать отравление. Поэтому количество ее в продовольственных товарах регламентируется соответствующими положениями Минздрава РФ. На 1 кг продукта допускается от 5 до 30 мг меди.

Цинк входит в состав ферментов, и особенно важна его роль в молекуле фермента карбоангидраза, участвующей в связывании и выведении из животного организма углекислоты. Цинк необходим для нормальной функции гормонов гипофиза, надпочечников и поджелудочной железы. Он влияет на жировой обмен, усиливая расщепление жиров и предупреждая ожирение печени. Содержание цинка (в мкг/100 г): в рыбе – 1000, мясе 2500, молоке – 400, хлебных изделиях – 1500, картофеле – 360, овощах – 400, фруктах – 150. Повышенное содержание цинка в продовольственных товарах может служить причиной отравлений. Суточная потребность взрослого человека в цинке составляет 10-15 мг.

Свинец ядовит для человека, способен аккумулироваться в организме, главным образом в печени, и вызывать тяжелые хронические отравления. При ежедневном употреблении с пищей 2-4 мг свинца через несколько месяцев могут обнаружиться признаки свинцового отравления. Чаще всего свинцовые отравления возникают при хранении продуктов в кустарной глиняной посуде, плохо покрытой глазурью. Содержание свинца в продовольственных товарах не допускается.

Олово в продовольственных товарах находится в небольших количествах. Оно не является ядовитым металлом, как свинец, цинк и медь, поэтому допускается в ограниченных количествах в аппаратуре пищевых предприятий, а также для лужения во избежание коррозии поверхности стали, из которой изготовляют консервные банки. Однако нередко при длительном хранении консервов в жестяных банках происходит взаимодействие массы продукта с оловянным покрытием жести, вследствие чего образуются оловянные соли органических кислот. Наиболее активно протекает этот процесс в жестяных банках, где находятся продукты с повышенной кислотностью – плоды, рыба и овощи в томатном соусе. Для большей защиты жестяной консервной банки от коррозии на поверхность олова дополнительно наносят специальные кислотоустойчивые лаки или эмаль. Содержание олова в консервах допускается не более 200 мг/кг.

Марганецшироко распространен в продуктах животного и растительного происхождения. Он принимает участие в образовании многих ферментов, формировании костей, процессах кроветворения и стимулирует рост. В растениях марганец усиливает процесс фотосинтеза и образования аскорбиновой кислоты. Растительные продукты богаче марганцем, чем животные. Основной источник марганца в питании человека – злаковые, бобовые и орехи. Особенно богаты марганцем чай и кофе.

Радиоактивные изотопыприсутствуют в организме человека, они непрерывно поступают и выводятся из организма. Во всех продовольственных товарах содержатся радиоактивные изотопы калия (К40), углерода (С14), водорода (Н3), а также радия и продукты его распада. Наиболее высока концентрация К40. Изотопы участвуют в обмене веществ наряду с нерадиоактивными элементами. Живые организмы очень чувствительны к повышению их концентрации. Небольшие концентрации изотопов способствуют росту живых организмов, а большие вызывают появление активных радикалов, вследствие чего нарушается жизнедеятельность отдельных органов и тканей, а также организма в целом. При атомных взрывах на поверхность Земли выпадают радиоактивные изотопы, которые загрязняют атмосферу, воду, почву и растения. Через пищу, атмосферу и воду они попадают в организм человека. В результате обработка продовольственных товаров радиоактивными изотопами увеличивается срок их хранения, задерживается прорастание картофеля. Однако содержание их в продовольственных товарах должно контролироваться постоянно во избежание превышения нормы.

Углеводы

Углеводы– органические соединения, в состав которых входят углерод, водород и кислород. Они синтезируются растениями из углекислоты и воды под действием солнечной энергии в присутствии хлорофилла. В растительных продуктах углеводы составляют 80% органических веществ, а в животных – 2%. При биологическом окислении углеводов выделяется энергия, необходимая для поддержания жизнедеятельности организма. При окислении 1 г углеводов выделяется 3,75 ккал, или 15,7 кДж. Избыток углеводов, особенно легкоусвояемых (сахар, кондитерские изделия), превращается в жир, который откладывается в организме и способствует повышению уровня холестерина в крови, что приводит к развитию атеросклероза.

По химическому строению углеводы подразделяют на моносахариды (простые сахара), олигосахариды (углеводы, построенные из небольшого количества моносахаридов) и полисахариды (несладкие, в воде образуют коллоидные растворы).

Моносахариды. Из моносахаридов в пищевых продуктах чаще всего встречаются гексозы (шесть атомов углерода) – глюкоза, фруктоза и галоктоза. Они имеют общую формулу С6Н12О6, но разное расположение атомов.

Глюкоза(виноградный сахар) в наибольших количествах находится в винограде, ягодах, меде, плодах зеленых частей растений. Глюкоза усваивается наиболее эффективно и быстро при наличии соответствующих ферментов. Для нормального функционирования организма человека необходимо содержание глюкозы в крови в количестве 80-120 мг%. Значительное накопление глюкозы в крови приводит к перенапряжению гормональной системы, в моче появляется сахар, что свидетельствует о возникновении сахарного диабета. Глюкоза восстанавливается в шестиатомный спирт – сорбит, который применяют для лечения диабета. Получают глюкозу кислотным гидролизом крахмала и применяют в кондитерском производстве.

Фруктоза(плодовый сахар) обладает восстанавливающими свойствами, образуя при этом два шестиатомных спирта (сорбит и маннит), имеющих сладковатый вкус. Получают фруктозу кислотным гидролизом полисахарида инулина, содержащегося в чесноке, корнях цикория и в клубнях топинамбура. Наибольшее количество фруктозы содержится в меде (37%), ягодах и фруктах (4–7%).

Глюкоза и фруктоза хорошо растворяются в воде, обладают большой гигроскопичностью (особенно фруктоза), легко сбраживаются дрожжами с образованием спирта и углекислого газа.

Галактозаявляется составной частью молочного сахара (лактозы) и пектиновых веществ, имеет незначительную сладость.

Поскольку моносахариды обладают восстанавливающими свойствами, их называют восстанавливающими, или редуцирующими, сахарами. Для редуцирующих Сахаров характерна высокая гигроскопичность, поэтому их содержание регламентируется стандартом в таких продуктах, как сахар, карамель, мармелад, пастила и др. Моносахариды сбраживаются дрожжами и микроорганизмами, на чем основано производство многих продовольственных товаров – спирта, вина, сыров, кисломолочных продуктов и др.

Олигосахариды. Они состоят из 2-6 остатков моносахаридов. К олигасахаридам относят дисахариды (сахароза, мальтоза, лактоза, трегалоза) – С12Н22О11 и трисахарид (рафинозу) – С18Н32О16.

Сахароза(свекловичный или тростниковый сахар) находится в сахарной свекле (12-24%), сахарном тростнике (14-26%), сахаре (99,7-99,9%), плодах и овощах, кондитерских изделиях. Под действием ферментов и кислот при нагревании происходит гидролиз (инверсия) сахарозы на глюкозу и фруктозу:

 

Мальтоза (солодовый сахар) образуется при гидролизе крахмала, содержится в патоке, проросшем зерне. Oнa менее сладкая, чем сахароза. При расщеплении мальтозы образуется только глюкоза (полный кислотный гидролиз).

Лактоза (молочный сахар). Основным источником ее служит коровье (5%) и женское (8%) молоко. В организме человека расщепляется под действием фермента лактозы на глюкозу и галактозу. У некоторых людей этот фермент может быть недостаточно активен или отсутствует, что приводит к непереносимости молока. Таким людям рекомендуются кисломолочные продукты, в которых лактоза сбраживается молочнокислыми бактериями в молочную кислоту.

Трегалоза (грибной сахар) содержится только в грибах и хлебопекарных дрожжах.

Рафиноза находится в небольших количествах в сахарной свекле и зерновых продуктах; она растворима в воде, несладкая на вкус. При ее гидролизе образуются глюкоза, фруктоза и галактоза.

Все сахара гигроскопичны, поэтому сахар, карамель при хранении в сыром помещении увлажняются. При нагревании сахаров до температуры 160-190 ºС образуются продукты темно-коричневого цвета. Такой процесс называется карамелизацией. Лактоза, глюкоза и фруктоза в растворе при 100 °С вступают в реакцию с аминокислотами белков, образуя темноокрашенные меланоидины. Этим объясняется потемнение молочных консервов, корки хлеба при выпечке, цвет черного чая, жареного кофе и других продуктов.

Сахара способны кристаллизоваться из водных растворов, например кристаллизация меда при хранении, варенья при низких температурах.

Полисахариды6Н10О5). Они состоят из большого количества остатков молекул моносахаридов, на которые распадаются при кислотном гидролизе. К полисахаридам относят крахмал, кликоген, инулин и клетчатку.

Крахмал полисахарид второго порядка, состоит из сотен и тысяч остатков молекул моносахаридов. Находится в растениях в виде крахмальных зерен, различающихся свойствами и химическим составом. Крахмал разных видов имеет различные форму и размер зерен. Самые крупные зерна овальной формы у картофельного крахмала, а самые мелкие угловатой формы – у рисового. Крахмал откладывается в качестве запасного вещества в клубнях, корнях, плодах и других частях растений. Наиболее богаты крахмалом зерна злаковых культур (в %): пшеница – 70, рожь – 65, кукуруза, рис, горох – 60-80, картофель – 24.

Наружная часть зерна крахмала состоит из вещества амилопектина, а внутренняя – из амилозы. Амилопектин при нагревании с водой набухает и клейстеризуется, в результате чего происходит увеличение объема при варке круп, макаронных изделий, образование вязких коллоидных растворов (при варке киселей и др.). В холодной воде крахмал нерастворим. Под действием фермента α-амилазы крахмал расщепляется до декстринов, под действием β-амилазы – до мальтозы, которая в свою очередь под действием мальтазы превращается в глюкозу. Гидролизом крахмала получают патоку. Крахмал под действием осахаривающих ферментов слюны и пищеварительных соков осахаривается и хорошо усваивается. Под действием йода крахмал окрашивается в синий цвет; это характерная реакция для определения наличия крахмала.

Гликоген (животный крахмал) откладывается в печени животных, при гидролизе переходит в глюкозу, легко набухает и растворяется в воде. Содержание в животных продуктах (рыба, мясо, яйца) -до 1%. Гликоген имеется в грибах, дрожжах, зерне кукурузы.

Инулин содержится в клубнях и корнях некоторых растений -земляная груша (топинамбур), корни цикория и одуванчика (15-17%). Инулин легко растворяется в теплой воде, образуя при этом коллоидный раствор. При кислотном гидролизе или под действием инулазы он превращается во фруктозу. На этом свойстве инулина основано производство фруктового сахара, предназначенного для питания людей, больных диабетом, склонных к ожирению и больных кариесом.

Клетчатка является основной структурной частью клеточных стенок хлорофиллоносных растений и относится к пищевым волокнам. В значительных количествах она находится в кожуре плодов, овощей, в муке низших сортов и нешлифованных крупах. Клетчатка не растворяется в воде, в слабых растворах серной кислоты и щелочи. Она не усваивается организмом человека, поэтому относится к балластным веществам. Однако она необходима, поскольку вследствие волокнистого строения способствует пищеварению, усиливает перистальтику кишечника, так как она выводит из организма соли тяжелых металлов, холестерин и другие вредные вещества.

Пектиновые вещества.Они являются продуктом окисления глюкозы и построены из остатков галактуриновой кислоты. В значительных количествах находятся в плодах, ягодах и овощах (яблоки, абрикосы, хурма, персики, крыжовник – 0,3-1,5%; тыква, земляника, смородина – 0,5-0,8%) в виде протопектина, пектина и пектиновой кислот. Пектиновые вещества, так же как и клетчатка, являются балластными веществами, не перевариваются и не всасываются в желудке и кишечнике. Однако роль пектина огромна, так как он связывает вредные и ядовитые вещества и выводит их из организма, способствует нормальному выделению желчи, снижает уровень холестерина в крови.

Протопектином богаты недозрелые плоды и овощи, он обусловливает твердую консистенцию их. При созревании плодов и овощей протопектин гидролизуется до пектина, вследствие чего плоды и овощи становятся мягче. При перезревании плодов и овощей значительная часть пектина превращается в пектиновую кислоту, придающую плодам и овощам неприятный вкус.

Под действием кислот или фермента протопектиназы протопектин переходит в растворимый в воде пектин, который в присутствии сахара (65-70%) и кислот образует студни. Это свойство пектина широко используется в кондитерской промышленности для производства желе, варенья, джемов, мармеладов, зефира и др.

Липиды

Липиды – природные органические соединения, многие из которых являются эфирами жирных кислот и спиртов. Общими свойствами липидов являются их гидрофобность и нерастворимость в воде, но все они по-разному растворяются в органических растворителях – эфире, бензине, хлороформе, ацетоне и др.

Из липидов в товароведении продовольственных товаров изучают жиры, высокомолекулярные кислоты и липоиды.

Жиры.Обладают высокой энергетической ценностью – 1 г жира при окислении выделяет 9,0 ккал (37,7 кДж), активно участвуют в пластических процессах, входя в состав оболочек живых клеток и других структур, а также откладываются в тканях организма. Они являются источником необходимых витаминов и других биологически активных веществ. Жиры широко используют при производстве многих продовольственных товаров, они улучшают вкусовые свойства пищи.

По происхождению жиры делят на растительные и животные..

К растительным жирам (маслам) относят масло какао, кокосовое и пальмовое.

Жидкие жиры в зависимости от свойств делят на невысыхающие (оливковое, миндальное) и высыхающие (льняное, конопляное, маковое и др.) масла.

Животные жирытакже делят на жидкие и твердые. Различают жидкие жиры наземных животных (копытный жир) и жидкие жиры морских животных и рыб (рыбий жир, жир печени китов и др.). Животные твердые жиры – говяжий, свиной, бараний, а также коровье масло.

По химическому составу жиры представляют собой смесь сложных эфиров трехатомного спирта глицерина С3Н5(ОН)3 и жирных кислот. В состав жиров входят остатки жирных кислот предельных (насыщенных) и непредельных (ненасыщенных). Жиры разного происхождения отличаются друг от друга составом жирных кислот. Все жирные кислоты, входящие в состав жиров, содержат четное число атомов углерода – от 14 до 22, но чаще 16 и 18. Растительные жиры, кроме кокосового масла и масла бобов какао, остаются жидкими при температуре, близкой к 0 ºС, так как содержат значительное количество непредельных жирных кислот.

Насыщенные жирные кислотыпальмитиновая (С15Н31СООН), стеариновая (С17Н35СООН), миристиновая (С13Н27СООН). Эти кислоты используются в основном как энергетический материал, содержатся в наибольших количествах и в животных жирах, что определяет высокую температуру плавления (50–60 °С) и твердое состояние этих жиров.

Ненасыщенные жирные кислотыподразделяют на мононенасыщенные (содержат одну ненасыщенную водородную) и полиненасыщенные (несколько связей). Основной представитель мононенасыщенных жирных кислот – олеиновая кислота (С18Н34О2), содержание которой в оливковом масле составляет 65%, в сливочном масле – 23%.

К полиненасыщенным жирным кислотам относят линолевую (С18Н32О4) с двумя двойными связями; линоленовую (C18H30O2) с тремя двойными связями и арахидоновую (С20Н32О2) с четырьмя двойными связями. Незаменимыми жирными кислотами являются линолевая, линоленовая и арахидоновая. Они обладают наибольшей химической активностью, принадлежат к витаминоподобным соединениям и носят название фактора F. Арахидоновая кислота находится в рыбьем жире и жире морских животных. Основной источник линолевой кислоты – подсолнечное масло (60%). В растительных маслах преобладают олеиновая, линолевая и линоленовая кислоты. В стандартах на растительные масла имеется показатель – йодное число, который характеризует степень ненасыщенности кислот. Чем выше йодное число, тем больше ненасыщенных кислот в жире, тем выше вероятность его прогоркания.

Усвояемость жиров в значительной степени зависит от температуры плавления. По усвояемости различают: жиры с температурой плавления 37 ºС, усвояемость 70-98% (все жидкие жиры, жиры молока, свиной топленый, жиры птиц и рыб); жиры с температурой плавления 50-60 ºС усваиваются плохо (бараний жир – 44-51 °С).

Жидкие жиры могут превращаться в твердые путем насыщения водородом непредельных жирных кислот. Этот процесс называется гидрогенизацией. Получение маргарина основано на гидрогенизации жира.

Жиры нерастворимы в воде, но в присутствии белков слизистых веществ, называемых эмульгаторами, способны образовывать с водой стойкие эмульсии. На этом свойстве жиров основано получение маргарина, майонеза и различных кремов.

Жиры легче воды, так как они имеют плотность ниже единицы – 0,7–0,9. У жиров высокая температура кипения, поэтому их используют для жарки, они не испаряются с горячей сковороды. Однако при сильном нагревании (240-260 °С) жир разлагается, образуя летучие сильно пахнущие вещества. Жиры относятся к нестойким соединениям, поэтому в процессе производства, обработки и хранения под влиянием внешних факторов в них могут происходить процессы гидролиза (расщепление на глицерин и свободные жирные кислоты в присутствии воды, кислот, ферментов). Гидролиз является первоначальной стадией порчи жиров при хранении. Образующиеся свободные жирные кислоты придают жиру посторонний привкус, поэтому в стандарты на пищевые жиры введен показатель качества жиров – кислотное число. В промышленности из жиросодержащего сырья при высокой температуре в присутствии щелочей получают мыло (процесс омыления).

Окисление жира – процесс химического взаимодействия кислорода и остатков непредельных жирных кислот триглицеридов – протекает в три стадии.

Окисление жиров под действием атмосферного кислорода называется автоокислением. Первая стадия автоокисления – индукционный период, когда окислительные процессы в жирах почти не обнаруживаются. Устойчивость различных жиров и масел к окислению характеризуется сравнительной длительностью их индукционных периодов. На второй стадии автоокисления происходят реакции, в результате которых образуются перекисные соединения. На третьей стадии протекают вторичные реакции перекисных соединений, в результате чего в жирах накапливаются гидроперекиси и продукты их превращений – альдегиды, кетоны, свободные низкомолекулярные жирные кислоты, которые изменяют вкус и запах жиров и масел и существенно снижают их пищевое достоинство.

Липоиды (жироподобные вещества).К ним относятся фосфатиды, стерины и воски.

Фосфатиды являются липидами, содержащими связанную фосфорную кислоту. Представляют собой сложные эфиры обычно одноатомных спиртов, одна или две спиртовые группы которых этерифи-цированы фосфорной кислотой. В фосфатиды, кроме остатков фосфорной кислоты входит одно из азотистых оснований – холин, коламин или серин. Фосфатиды, состоящие из остатков глицерина, жирных кислот, фосфорной кислоты и холина, называются лецитинами. Лецитин в воде не растворим, но образует с ней эмульсии. Это свойство лецитина используется в маргариновой промышленности, при производстве шоколада, вафель, печенья. Много лецитина в яичном желтке (9,4%), сое (1,7%), молочном жире (1,3%), грибах (7,0%), нерафинированных растительных маслах.

Кефалин – это фосфатид, в котором фосфорная кислота соединена с каломином, являющимся менее сильным основанием, чем холин. Кефалин обладает более кислыми свойствами, чем лецитин; играет важную роль в процессе свертывания крови.

Стерины высокомолекулярные циклические спирты, в жирах встречаются в свободном виде и в виде стеридов – эфиров жирных кислот. В состав животных жиров входит холестерин (мозг, яичный желток, плазма крови – 1,6%). В растительных и бактериальных клетках наибольшее значение имеет эргостерин, отличающийся от холестерина двумя дополнительными двойными связями и одной дополнительной метильной группой, под действием ультрафиолетовых лучей эргостерин превращается в кальциферол – витамин D.

Воски по химической природе близки к жирам. Растительные воски образуют налет на поверхности листьев, плодов, овощей, который защищает их от микробов, высыхания, излишней влажности. К воскам животного происхождения относится пчелиный воск.

Азотсодержащие вещества

 

Азотсодержащие соединения составляют значительную часть сухого вещества продовольственных товаров. К ним относятся белки, аминокислоты, амиды аминокислот, нуклеиновые кислоты, аммиачные соединения, нитраты, нитриты и др.

Аминокислоты являются основными структурными компонентами молекул белка и в свободном виде появляются в продовольственных товарах в процессе распада белка.

Амиды аминокислот содержатся в растительных продуктах в качестве естественной составной части. Например, в капусте и спарже находится амид аспарагина (0,2-0,3%).

Аммиачные соединения встречаются в продовольственных товарах в малых количествах в виде аммиака и его производных. Аммиак является конечным продуктом распада белков. Значительное количество аммиака и аминов указывает на гнилостное разложение белков продовольственных товаров. Поэтому при исследовании свежести мяса и рыбы определяют содержание в них аммиака. К производным аммиака относятся моноамины CH3NH2, диметиламины (CH3)2NH и триметиламины (CH3)3N, которые обладают специфическим запахом. Метиламин имеет запах, сходный с аммиаком. Диметиламин – газообразное вещество с запахом селедочного рассола, образуется в основном при гниении белков рыбы и других продуктов. Триметиламин – газообразное вещество, содержащееся в значительном количестве в селедочном рассоле. В концентрированном виде обладает запахом аммиака, но в слабых концентрациях имеет запах гнилой рыбы.

Нитраты соли азотной кислоты. В продовольственных товарах содержатся в незначительных количествах, за исключением тыквы и кабачков.

Нитриты добавляют в небольших количествах при посоле мяса и в колбасный фарш для придания мясу розового цвета. Нитриты обладают высокой токсичностью, поэтому применение их в пищевой промышленности лимитируется (в мясной колбасный фарш добавляют раствор нитрита из расчета не более 0,005% массы мяса).

Белки имеют наиболее важное из азотсодержащих соединений значение для питания человека. Они являются наиболее важными органическими соединениями, входящими в состав живых организмов. Еще в прошлом веке, изучая состав различных животных и растений, ученые выделили вещества, которые по некоторым свойствам напоминали яичный белок: так, при нагревании они свертывались. Это и дало основание назвать их белками. Значение белков как основы всего живого было отмечено еще Ф. Энгельсом. Он писал, что там, где есть жизнь, обнаруживаются белки, а где присутствуют белки, там отмечены признаки жизни.

Таким образом, термином «белки» назван большой класс органических высокомолекулярных азотсодержащих соединений, присутствующих в каждой клетке и определяющих ее жизнедеятельность.

Химический состав белков. Химический анализ показал наличие во всех белках (в %): углерода – 50-55, водорода – 6-7, кислорода – 21-23, азота – 15-17, серы – 0,3-2,5. В отдельных белках обнаружены фосфор, йод, железо, медь и некоторые макро- и микроэлементы в различных количествах.

Содержание основных химических элементов в отдельных белках может быть различным, за исключением азота, концентрация которого наиболее постоянна и в среднем составляет 16%.

Для определения химической природы мономеров белка проводят гидролиз – длительное кипячение белка с сильными минеральными кислотами или основаниями. Наиболее часто применяют 6N НNО3 и кипячение при 110°С в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют метод хроматографии. Наконец, природу выделенных мономеров выясняют с помощью определенных химических реакций. В результате было установлено, что исходными составными частями белков являются аминокислоты.

Молекулярная масса (м.м.) белков от 6000 до 1 000000 и выше, так, м.м. белка альбумина молока – 17400, глобулина молока – 35200, яичного альбумина – 45000. В организме животных и растений белок встречается в трех состояниях: жидком (молоко, кровь), сиропообразном (яичный белок) и твердом (кожа, волосы, шерсть).

Благодаря большой м.м. белки находятся в коллоидном состоянии и диспергированы (распределены, рассеяны, взвешаны) в растворителе. Большинство белков относится к гидрофильным соединениям, способны вступать во взаимодействие с водой, которая связывается с белками. Такое взаимодействие называется гидратацией.

Многие белки под влиянием некоторых физических и химических факторов (температура, органические растворители, кислоты, соли) свертываются и выпадают в осадок. Этот процесс называется денатурацией. Денатурированный белок теряет способность к растворению в воде, растворах солей или спирте. Все продовольственные товары, переработанные с помощью высоких температур, содержат денатурированный белок. У большинства белков температура денатурации составляет 50-60 ºС. Свойство белков денатурироваться имеет важное значение, в частности, при выпечке хлеба и получении кондитерских изделий. Одно из важных свойств белков – способность образовывать гели при набухании в воде. Набухание белков имеет большое значение при производстве хлеба, макаронных и других изделий. При «старении» гель отдает воду, при этом уменьшается в объеме и сморщивается. Это явление, обратное набуханию, называется синерезисом.

При неправильном хранении белковых продуктов может происходить более глубокое разложение белков с выделением продуктов распада аминокислот, в том числе аммиака и углекислого газа. Белки, содержащие серу, выделяют сероводород.

Человеку требуется 80–100 г белков в сутки, в том числе 50 г животных белков. При окислении 1 г белка в организме выделяется 16,7 кДж, или 4,0 ккал.

Содержание белков в продовольственных товарах составляет (в %):. в говядине – 17; свинине – 15,2; баранине – 15,2; яйцах – 12,8; треске – 16,5; пшеничной муке -- 10,5; молоке – 2,5-3,5; масле сливочном – 0,6; сыре – 22–29; картофеле – 2,0; орехах – 12-20; сое – 34,9.

Аминокислоты – это органические кислоты, у которых атом водорода α-углеродного атома замещен на аминогруппу NH2. Следовательно, это α-аминокислота с общей формулой

 

 

Следует отметить, что в составе всех аминокислот имеются общие группировки: -СН2, -NH2, -COOH, а боковые цепи аминокислот, или радикалы (R), различаются. Химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации аминных и карбоксильных групп, а также групп, входящих в состав радикалов. Другими словами, они являются амфотермными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы протонов).

Все аминокислоты в зависимости от структуры разделены на несколько групп (рис. 1.1).

 

Рис. 1.1. Классификация аминокислот

 

Из 20 аминокислот, которые участвуют в построении белков, не все обладают одинаковой биологической ценностью. Некоторые аминокислоты синтезируются организмом человека, и потребность в них удовлетворяется без поступления извне. Такие аминокислоты называются заменимыми (гистидин, аргинин, цистин, тирозин, аланин, серии, глутаминовая и аспарагиновая кислоты, пролин, оксипролин, глицин). Другая часть аминокислот не синтезируется организмом и они должны поступать с пищей. Их называют незаменимыми (триптофан). Белки, содержащие все незаменимые аминокислоты, называются полноценными, а если отсутствует, хотя бы одна из незаменимых кислот – белок является неполноценным.

Классификация белков. В основу классификации белков положены их физико-химические и химические особенности. Белки делят на простые (протеины) и сложные (протеиды). К простым относят белки, которые при гидролизе дают только аминокислоты. К сложным – белки, состоящие из простых белков и соединений небелковой группы, называемой простетической.

К протеинам относятся альбумины (молока, яиц, крови), глобулины (фибриноген крови, миозин мяса, глобулин яиц, туберин картофеля и др.), глютелины (пшеницы и ржи), продамины (глиадин пшеницы), склеропротеины (коллаген костей, эластин соединительной ткани, кератин волос).

К протеидам относятся фосфопротеиды (казеин молока, вителлин куриного яйца, ихтулин икры рыб), которые состоят из белка и фосфорной кислоты; хромопротеиды (гемоглобин крови, миоглобин мышечной ткани мяса), представляющие собой соединения белка глобина и красящего вещества; глюкопротеиды (белки хрящей, слизистых оболочек), состоящие из простых белков и глюкозы; липопротеиды (белки, содержащие фосфатид) входят в состав протоплазмы и хлорофилловых зерен; нуклеопротеиды содержат нуклеиновые кислоты и играют важную для организма роль в биологическом отношении.

Витамины

Витамины это низкомолекулярные органические соединения. Они служат биологическими регуляторами химических реакций обмена веществ, протекающих в организме человека, участвуют в образовании ферментов и тканей, поддерживают защитные свойства организма в борьбе с инфекциями.

В настоящее время открыто несколько десятков веществ, которые по действию на организм человека можно отнести к витаминам, но непосредственное значение для питания имеют только 20. Витамины обозначают буквами латинского алфавита: А, В, С, D и др. Кроме того, каждый из них имеет название, соответствующее химическому строению. Например, витамин С – аскорбиновая кислота, витамин D – кальциферол, витамин В1 – тиамин и т. д. Витамины, как правило, не синтезируются в организме человека, поэтому основным источником большинства из них являются продукты питания, а также синтезированные витаминные препараты. Суточная потребность организма человека в витаминах исчисляется в миллиграммах.

В случае отсутствия в пище витаминов могут возникать заболевания – авитаминозы. Недостаточное потребление витаминов вызывает гиповитаминоз, а избыточное потребление жирорастворимых витаминов – гипервитаминоз. Витамины находятся почти во всех продовольственных товарах. Некоторые товары подвергают витаминизации: витаминизированное молоко, сливочное масло, кондитерские изделия и т. д.

В зависимости от растворимости витамины подразделяют на водорастворимые – С, Р, группы В и жирорастворимые – A, D, E, К.

Водорастворимые витамины.Из них наиболее часто встречаются следующие.

Витамин С (аскорбиновая кислота) -- противоцинготный. Он играет важную роль в окислительно-восстановительных процессах организма, влияет на белковый, углеводный и холестериновый обмен. При недостатке витамина С в пище снижается сопротивляемость организма человека различным заболеваниям. Отсутствие его вызывает цингу. Суточная норма потребления витамина С – 50–70 мг. Содержится он в основном в свежих овощах и плодах; особенно много его в шиповнике, черной смородине и перце красном, имеется он также в зелени петрушки и укропа, луке зеленом, капусте белокочанной, томатах красных, яблоках, картофеле.

Витамин Р (рутин) обладает капилляроукрепляющим действием и снижает проницаемость стенок кровеносных сосудов. Суточная норма потребления витамина 25–35 мг. Содержится этот витамин в тех же растительных продуктах, в которых находится витамин С.

Витамины группы В: В1, В2, РР, В6, В12, В16, Н холин и др.

Витамин В1 (тиамин) играет важную роль в обмене веществ, особенно углеводном, в регулировании деятельности нервной системы. При недостатке его в пище наблюдаются расстройства нервной системы, кишечника. Отсутствие витамина в питании приводит к авитаминозу. Потребность в витамине В1в среднем 2–2,5 мг/сут. При недостатке в пище этого витамина ухудшаются состояние кожи, зрение, снижается функция желудочной секреции. Содержится витамин В2 в яйцах, сыре, молоке, мясе, рыбе, хлебе, крупе гречневой, овощах, фруктах, дрожжах.

Витамин РР (никотиновая кислота) является составной частью ферментов, участвующих в обмене веществ. Недостаток в пище витаминов РР вызывает утомляемость, слабость, раздражительность и заболевание пеллагрой. Суточная потребность в витамине 15–25 мг. Он содержится в продуктах растительного и животного происхождения.

Витамин В6(пиридоксин) участвует в обмене веществ. При недостатке его в питании наблюдается расстройство нервной системы, дерматиты, склеротические изменения сосудов. Суточная потребность 2–3 мг.

Витамин В9(фолиевая кислота) обеспечивает нормальное кроветворение в организме человека и участвует в обмене веществ. При недостатке фолиевой кислоты в питании развиваются различные формы малокровия. Суточная норма потребления этого витамина 0,2-0,3 мг. Много его в зеленых листьях (салат, шпинат, петрушка, зеленый лук).

Витамин В12 (кобаламин) играет важную роль в процессах регулирования кроветворения, в обмене белков, жиров и углеводов. При недостатке витамина В12 в организме развивается злокачественное малокровие. Потребность в витамине 0,002-0,005 мг/сут. Этот витамин содержится- только в продуктах животного происхождения: в мясе, печени, молоке, сыре, яйцах.

Витамин В15 (пангамовая кислота) участвует в окислительных процессах в организме, оказывая благоприятное действие на сердце, сосуды, кровообращение; особенно необходим пожилым людям. Суточная потребность в витамине около 2 мг. Содержится он в рисовых отрубях, дрожжах, печени и крови животных.

Холин влияет на белковый и жировой обмен, обезвреживает вредные для организма вещества. Отсутствие холина в пище способствует жировому перерождению печени, поражению почек. Потребность в холине 500-1000 мг/сут. Холин находится в продуктах животного и растительного происхождения (кроме овощей и фруктов): в рисе, в печени, мясе, желтке яиц, молоке.

Витамин Н (биотин) регулирует деятельность нервной системы. При недостатке этого витамина в питании отмечаются нервные расстройства с поражениями кожи. Потребность в биотине 0,15-0,3 мг/сут. Он частично синтезируется бактериями кишечника. В продуктах биотин представлен широко, но в небольших количествах (в печени, мясе, молоке, картофеле и др.). Витамин устойчив к кулинарной обработке.

Жирорастворимые витамины.К ним относятся следующие витамины.

Витамин А (ретинол) влияет на рост и нормальное развитие скелета, зрение, состояние кожи и слизистой оболочки, сопротивляемость организма инфекционным заболеваниям. При недостатке витамина А прекращается рост, выпадают волосы, организм истощается, нарушается зрение, особенно в сумерках («куриная слепота»). Суточная норма для взрослого человека 1,5-2,5 мг. Содержится витамин А в продуктах животного происхождения: в рыбьем жире, печени, яйцах, молоке, мясе. В продуктах растительного происхождения желто-оранжевого цвета и в зеленых частях растений (шпинате, салате) находится провитамин А – каротин, который в организме человека превращается в витамин А.

Витамин D (кальциферол) участвует в образовании костной ткани, способствует удержанию в ней солей кальция и фосфора, стимулирует рост. При недостатке в организме этого витамина у детей развивается рахит, а у взрослых изменяются костные ткани. Витамин D содержится в животной пище: в тресковой печени, палтусе, сельди, треске, печени говяжьей, сливочном масле, яйцах, молоке и др. Но в основном он синтезируется в организме из провитамина (вещества, содержащегося в коже) в результате воздействия ультрафиолетовых лучей.

Витамин Е (токоферол) влияет на процессы размножения. При недостатке этого витамина происходят изменения в деятельности половой и центральной нервной систем, нарушается деятельность желез внутренней секреции. Суточная потребность в витамине 10-20 мг. Витамин Е находится как в растительных, так и в животных продуктах, поэтому недостатка человек в нем не испытывает. Особенно много витамина Е в зародышах злаков и растительных маслах. Содержание его в продуктах при нагревании снижается. Витамин Е обладает антиокислительным действием и широко применяется в пищевой промышленности для замедления процесса окисления жиров.

Витамин К (филлохинон) участвует в процессе свертывания крови. При недостатке его замедляется свертывание крови и появляются подкожные внутримышечные кровоизлияния. Суточная потребность в витамине 0,2-3 мг. Большая часть этого витамина синтезируется бактериями в кишечнике человека. Витамин К содержится в основном в зеленых листьях салата, капусты, шпината, крапивы. Под действием света, высокой температуры и щелочей он разрушается.

Витаминоподобные вещества.Наибольшее значение имеют следующие вещества.

Витамин F (ненасыщенные жирные кислоты: линолевая, линоленовая, арахидоновая) участвует в жировом и холестериновом обмене. Суточная норма потребления витамина 5–8 г. Наилучшее соотношение ненасыщенных жировых кислот отмечено в свином сале, арахисовом и оливковом маслах.

Витамин U нормализует секреторную функцию пищеварительных желез, содержится в соке капусты, картофеле, зеленом чае и молоке.

Ферменты

Ферменты (энзимы) – это биологические катализаторы белковой природы, обладающие способностью активизировать различные химические реакции, происходящие в живом организме.

Образуются ферменты в любой живой клетке и могут проявлять активность вне ее. Действие ферментов строго специфично, т. е. каждый фермент катализирует только одну или несколько близких химических реакций. Поэтому название их складывается из названия вещества, на которое они действуют, и окончания «аза». Например, фермент, расщепляющий сахарозу, называют сахаразой, лактозу – лактазой. Ферменты обладают очень большой активностью. Ничтожной дозы их достаточно для превращения огромного количества вещества из одного состояния в другое. Ферменты характеризуются определенными свойствами. Так, некоторые ферментативные процессы обратимы, т. е. в зависимости от условий одни и те же ферменты могут ускорять как процесс распада, так и процесс синтеза вещества. Они чувствительны к изменению температуры. Наивысшую активность ферменты проявляют при температуре 40-50 ºС. Поэтому для предупреждения порчи продукты хранят на холоде или подвергают тепловой обработке.

Ферменты играют важную роль в производстве продовольственных товаров, в процессе их хранения и кулинарной обработки. Для изготовления сыров используют сычужные ферменты. В производстве кисломолочных продуктов, квашеных овощей и брожении теста участвуют ферменты, которые выделяют бактерии и дрожжи. Ферменты существенно влияют на качество продуктов. В одних случаях это влияние положительно, например созревание мяса после убоя животных и сельди и лососевых рыб при посоле, в других случаях – отрицательно, например потемнение яблок, картофеля при очистке и нарезке. Под действием ферментов окисляются жиры. Прокисание супов, гниение фруктов, брожение компотов и варенья вызывают ферменты, выделяемые попавшими в пищу микробами. Для прекращения отрицательного действия ферментов применяют нагревание или понижение температуры хранения продуктов.

По современной классификации все ферменты делят на шесть классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы). Каждый класс подразделяют на подклассы, а каждый подкласс – на группы.

Оксидоредуктазы.Это ферменты, катализирующие окислительно-восстановительные реакции, которые протекают в живых организмах.

В классе оксидоредуктаз основное значение имеют дегидрогеназы, которые осуществляют реакцию дегидрирования. Все дегидрогеназы делят на две группы: анаэробные и аэробные, которые называют оксидазами.

Анаэробные дегидрогеназы представляют собой специфические ферменты, катализирующие отщепление водорода от определенных химических веществ и передающие его другим ферментам – переносчикам водорода. Так, лактатдегидрогеназа катализирует реакцию окисления молочной кислоты до пировиноградной, изоцитратдегидрогеназа – окисление изолимонной кислоты до щавелево-янтарной.

К группе аэробных дегидрогеназ (оксидаз) относят ферменты, в состав которых в качестве кофермента входит витамин В2 (рибофлавин), поэтому их называют флавиновыми ферментами. Они способны отнимать водород от окисляемого вещества и передавать его другим соединениям или кислороду воздуха. К этой группе ферментов относятся полифенолоксидаза, аскорбинатоксидаза, глюко-оксидаза.

Трансферазы, или ферменты переноса.Они ускоряют перенос целых атомных групп от одного соединения к другому. Трансферазы имеют огромное значение для обмена веществ в живых организмах. В зависимости от характера переносимых группировок различают аминотрансферазы, фосфортрансферазы, глюкозилтрансферазы, ацилтрансферазы и др.

Аминотрансферазы ускоряют реакцию переаминирования аминокислот с кетокислотами.

Фосфортрансферазы ускоряют перенос остатков фосфорной кислоты на спиртовые, карбоксильные, азотсодержащие и другие группы тех или иных органических соединений.

Глюкозилтрансферазы катализируют реакции переноса глюкозидных остатков с молекул фосфорных эфиров или других соединений к молекулам моносахаридов, полисахаридов или других веществ.

Гидролазы.Эти ферменты катализируют гидролиз, а иногда и синтез органических соединений при участии воды. Этот класс подразделяют на 9 подклассов. Наиболее важными являются четыре подкласса гидролаз: эстеразы, карбогидразы, амидазы и пептидазы.

Эстеразы ускоряют реакции гидролиза и синтеза сложных эфиров. К ним относятся липазы, лецитиназы и другие ферменты.

Карбогидразы расщепляют глюкозидные связи в углеводах и их производных. К ним относятся мальтаза, лактаза, пектиназа и др.

Амидазы ускоряют гидролиз амидов кислот. К ним относятся пурин- и пирамидиндезаминазы, ациламидазы, амидиназы и др.

Пептидазы катализируют реакции расщепления белка и полипептидов.

Лиазы.Они объединяют ферменты, ускоряющие негидротические реакции распада органических-веществ с отщеплением воды, углекислого газа или аммиака и др. Некоторые из этих реакций обратимы, и соответствующие ферменты при определенных условиях катализируют реакции не только распада, но и синтеза.

Изомеразы.Они катализируют превращение органических соединений в их изомеры. В отличие от трансферазы измеразы катализируют перенос групп только внутри молекул. Эти превращения могут состоять во внутримолекулярном переносе водорода, фосфатных и ацетильных групп, в изменении пространственного расположения атомных группировок, в перемещении двойных связей. Изомеразы играют важную роль в обмене веществ.

Лигазы (синтетазы).Это большая группа ферментов, ускоряющих синтез сложных органических соединений из более простых. Реакция синтеза требует значительной затраты энергии, поэтому активность лигаз проявляется лишь в присутствии таких макроэнергетических соединений, как аденозинтрифосфорная кислота (АТФ) или другой нуклеотидтрифосфат. При отрыве от молекул АТФ в присутствии лигаз одного или двух концевых остатков фосфорной кислоты выделяется большое количество энергии, используемой для активирования реагирующих веществ.

Ферменты способны осуществлять каталитические функции вне клетки и вне организма, поэтому для практических целей представляет большой интерес выделение ферментов и их использование в пищевой, легкой, медицинской и некоторых других отраслях промышленности, на предприятиях общественного питания. Применение ферментов позволяет в большинстве случаев интенсифицировать технологические процессы, повышать качество готового продукта, улучшать его товарный вид, снижать себестоимость производства, расширять сырьевые ресурсы.

Органические кислоты