Вторичные посредники (мессенджеры)

Мессенджеры – низкомолекулярные вещества, переносящие сигналы гормонов внутри клетки. Они обладают высокой скоростью перемещения, расщепления или удаления (Са2+, цАМФ, цГМФ, ДАГ, ИТФ).

Нарушения обмена мессенджеров приводят к тяжелым последствиям. Например, форболовые эфиры, которые являются аналогами ДАГ, но в отличие от которого в организме не расщепляются, способствуют развитию злокачественных опухолей.

 

цАМФ открыта Сазерлендом в 50 годах прошлого века. За это открытие он получил Нобелевскую премию. цАМФ участвует в мобилизации энергетических запасов (распад углеводов в печени или триглицеридов в жировых клетках), в задержке воды почками, в нормализации кальциевого обмена, в увеличении силы и частоты сердечных сокращений, в образовании стероидных гормонов, в расслаблении гладких мышц и так далее.

цГМФ активирует ПК G, ФДЭ, Са2+-АТФазы, закрывает Са2+-каналы и снижает уровень Са2+ в цитоплазме.

 

Ферменты

Ферменты каскадных систем катализируют:

  • образование вторичных посредников гормонального сигнала;
  • активацию и ингибирование других ферментов;
  • превращение субстратов в продукты;

Аденилатциклаза (АЦ)

Гликопротеин с массой от 120 до 150 кДа, имеет 8 изоформ, ключевой фермент аденилатциклазной системы, с Mg2+ катализирует образование вторичного посредника цАМФ из АТФ.

АЦ содержит 2 –SH группы, одна для взаимодействия с G-белком, другая для катализа. АЦ содержит несколько аллостерических центров: для Mg2+, Mn2+, Ca2+, аденозина и форсколина.

Есть во всех клетках, располагается на внутренней стороне клеточной мембраны. Активность АЦ контролируется: 1) внеклеточными регуляторами - гормонами, эйкозаноидами, биогенными аминами через G-белки; 2) внутриклеточным регулятором Са2+ (4 Са2+-зависимые изоформы АЦ активируются Са2+).

 

Протеинкиназа А (ПК А)

ПК А есть во всех клетках, катализируют реакцию фосфорилирования ОН- групп серина и треонина регуляторных белков и ферментов, участвует в аденилатциклазной системе, стимулируется цАМФ. ПК А состоит из 4 субъединиц: 2 регуляторных R (масса 38000 Да) и 2 каталитических С (масса 49000 Да). Регуляторные субъединицы имеют по 2 участка связывания цАМФ. Тетрамер не обладает каталитической активностью. Присоединение 4 цАМФ к 2 субъединицам R приводит к изменению их конформации и диссоциации тетрамера. При этом высвобождаются 2 активные каталитические субъединицы С, которые катализируют реакцию фосфорилирования регуляторных белков и ферментов, что изменяет их активность.

Протеинкиназа С (ПК С)

ПК С участвует в инозитолтрифосфатной системе, стимулируется Са2+, ДАГ и фосфатидилсерином. Имеет регуляторный и каталитический домен. ПК С катализирует реакцию фосфорилирования белков-ферментов.

Протеинкиназа G (ПК G) есть только в легких, мозжечке, гладких мышцах и тромбоцитах, участвует в гуанилатциклазной системе. ПК G содержит 2 субъединицы, стимулируется цГМФ, катализирует реакцию фосфорилирования белков-ферментов.

Фосфолипаза С (ФЛ С)

Гидролизует фосфоэфирную связь в фосфатидилинозитолах с образованием ДАГ и ИФ3, имеет 10 изоформ. ФЛ С регулируется через G-белки и активируется Са2+.

Фосфодиэстеразы (ФДЭ)

ФДЭ превращает цАМФ и цГМФ в АМФ и ГМФ, инактивируя аденилатциклазную и гуанилатциклазную систему. ФДЭ активируется Са2+, 4Са2+-кальмодулином, цГМФ.

NO-синтаза – это сложный фермент, представляющий собой димер, к каждой из субъединиц которого присоединено несколько кофакторов. NO-синтаза имеет изоформы.

Синтезировать и выделять NO способно большинство клеток организма человека и животных, однако наиболее изучены три клеточные популяции: эндотелий кровеносных сосудов, нейроны и макрофаги. По типу синтезирующей ткани NO-синтаза имеет 3 основные изоформы: нейрональную, макрофагальную и эндотелиальную (обозначаются соответственно как NO-синтаза I, II и III).

Нейрональная и эндотелиальная изоформы NO-синтазы постоянно присутствуют в клетках в небольших количествах, и синтезируют NO в физиологических концентрациях. Их активирует комплекс кальмодулин-4Са2+.

NO-синтаза II в макрофагах в норме отсутствует. При воздействии на макрофаги липополисахаридов микробного происхождения или цитокинов они синтезируют огромное количество NO-синтазы II (в 100-1000 раз больше чем NO-синтазы I и III), которая производит NO в токсических концентрациях. Глюкокортикоиды (гидрокортизон, кортизол), известные своей противовоспалительной активностью, ингибируют экспрессию NO-синтазы в клетках.

Действие NO

NO - низкомолекулярный газ, легко проникает через клеточные мембраны и компоненты межклеточного вещества, обладает высокой реакционной способностью, время его полураспада в среднем не более 5 с, расстояние возможной диффузии небольшое, в среднем 30 мкм.

 

В физиологических концентрациях NO оказывает мощное сосудорасширяющее действие:

· Эндотелий постоянно продуцирует небольшие количества NO.

· При различных воздействиях – механических (например, при усилении тока или пульсации крови), химических (липополисахариды бактерий, цитокины лимфоцитов и кровяных пластинок и т.д.) – синтез NO в эндотелиальных клетках значительно повышается.

· NO из эндотелия диффундирует к соседним гладкомышечным клеткам стенки сосуда, активирует в них гуанилатциклазу, которая синтезирует через 5с цГМФ.

· цГМФ приводит к снижению уровня ионов кальция в цитозоле клеток и ослаблению связи между миозином и актином, что и позволяет клеткам через 10 с расслабляться.

На этом принципе действует препарат нитроглицерин. При расщеплении нитроглицерина образуется NO, приводящий к расширению сосудов сердца и снимающий в результате этого чувство боли.

NO регулирует просвет мозговых сосудов. Активация нейронов какой-либо области мозга приводит к возбуждению нейронов, содержащих NO-синтазу, и/или астроцитов, в которых также может индуцироваться синтез NO, и выделяющийся из клеток газ приводит к локальному расширению сосудов в области возбуждения.

NO участвует в развитии септического шока, когда большое количество микроорганизмов, циркулирующих в крови, резко активируют синтез NO в эндотелии, что приводит к длительному и сильному расширению мелких кровеносных сосудов и как следствие – значительному снижению артериального давления, с трудом поддающемуся терапевтическому воздействию.

В физиологических концентрациях NO улучшает реологические свойства крови:

NO, образующийся в эндотелии, препятствует прилипанию лейкоцитов и кровяных пластинок к эндотелию и также снижает агрегацию последних.

NO может выступать в роли антиростового фактора, препятствующего пролиферации гладкомышечных клеток стенки сосудов, важного звена в патогенезе атеросклероза.

 

В больших концентрациях NO оказывает на клетки (бактериальные, раковые и т.д) цитостатическое и цитолитическое действие следующим образом:

· при взаимодействии NO с радикальным супероксид анионом образуется пероксинитрит (ONOO-), который является сильным токсичным окислителем;

· NO прочно связывается с геминовой группой железосодержащих ферментов и ингибирует их (ингибирование митохондриальных ферментов окислительного фосфорилирования блокирует синтез АТФ, ингибирование ферментов репликации ДНК способствуют накоплению в ДНК повреждений).

· NO и пероксинитрит могут непосредственно повреждать ДНК, это приводит к активации защитных механизмов, в частности стимуляции фермента поли(АДФ-рибоза) синтетазы, что еще больше снижает уровень АТФ и может приводить к клеточной гибели (через апоптоз).