Построение доверительного интервала для оценки среднего значения генеральной совокупности

Чтобы найти границы доверительного интервала для среднего значения генеральной совокупности необходимо выполнить следующие действия:

1) по полученной выборке объема n вычислить среднее арифметическое и стандартную ошибку среднего арифметического по формуле:

;

2) задать доверительную вероятность 1 – α, исходя из цели исследования;

3) по таблице t-распределения Стьюдента (Приложение 4) найти граничное значение tα в зависимости от уровня значимости α и числа степеней свободы k = n – 1;

4) найти границы доверительного интервала по формуле:

.

Примечание: В практике научных исследований, когда закон распределения малой выборочной совокупности (n < 30) неизвестен или отличен от нормального, пользуются вышеприведенной формулой для приближенной оценки доверительных интервалов.

Доверительный интервал при n ≥ 30 находится по следующей формуле:

,

где ua – процентные точки нормированного нормального распределения, которые находятся по таблице 5.1.

 

 

Порядок работы на V этапе

1. Проверить на нормальность распределения малую (n < 30) выборку, составленную из разностей парных значений результатов измерений исходного показателя скоростных качеств у «спортсменов» (эти результаты обозначены индексом В) и показателя, достигнутого после двухмесячных тренировок (эти результаты обозначены индексом Г).

2. Выбрать критерий и оценить эффективность метода тренировки, используемого для ускоренного развития скоростных качеств у «спортсменов».

3. Рассчитать и графически построить на числовой прямой доверительные интервалы генеральных средних арифметических выборок В и Г.

Отчет
о работе на V этапе игры
(образец)

Тема: Оценка эффективности методики тренировки.

Цели:

1. Ознакомиться с особенностями нормального закона распределения результатов тестирования.

2. Приобрести навыки по проверке выборочного распределения на нормальность.

3. Приобрести навыки оценки эффективности методики тренировки.

4. Научиться рассчитывать и строить доверительные интервалы для генеральных средних арифметических малых выборок.

Вопросы:

1. Сущность метода оценки эффективности методики тренировки.

2. Нормальный закон распределения. Сущность, значение.

3. Основные свойства кривой нормального распределения.

4. Правило трех сигм и его практическое применение.

5. Оценка нормальности распределения малой выборки.

6. Какие критерии и в каких случаях используются для сравнения средних попарно зависимых выборок?

7. Что характеризует доверительный интервал? Методика его определения.

 

Вариант 1: критерий параметрический

Примечание: В качестве примера возьмем приведенные в таблице 5.2 результаты измерения показателя скоростных качеств у спортсменов до начала тренировок (они обозначены индексом В, были получены в результате измерений на I этапе деловой игры) и после двух месяцев тренировок (они обозначены индексом Г).

 

От выборок В и Г перейдем к выборке, составленной из разностей парных значений di = NiГ NiВ и определим квадраты этих разностей. Данные занесем в расчетную таблицу 5.2.

Таблица 5.2 – Расчет квадратов парных разностей значений di2

№ п/п NiВ, уд NiГ, уд di = NiГNiВ, уд di2, уд2
-2
      S = 50 S = 484

 

Пользуясь таблицей 5.2, найдем среднее арифметическое парных разностей:

уд.

Далее рассчитаем сумму квадратов отклонений di от по формуле:

уд.2

Определим дисперсию для выборки di:

уд.2

Далее необходимо выборку, составленную из разностей парных значений di, проверить на нормальность распределения.

Выдвигаем гипотезы:

– нулевую – H0: о том, что генеральная совокупность парных разностей di имеет нормальное распределение;

– конкурирующую – H1: о том, что распределение генеральной совокупности парных разностей di отлично от нормального.

Проверку проводим на уровне значимости a = 0,05.

Для этого составим расчетную таблицу 5.3.

Таблица 5.3 – Данные расчета критерия Шапиро и Уилка Wнабл для выборки, составленной из разностей парных значений di

№ п/п di, уд k dn - k + 1-dk=Dk ank Dk×ank
-2 17 – (–2) = 19 0,5739 10,9041
7 – 0 = 7 0,3291 2,3037
6 – 3 = 3 0,2141 0,6423
6 – 3 = 3 0,1224 0,3672
6 – 4 = 2 0,0399 0,0798
       
       
       
       
       

 

Порядок заполнения таблицы 5.3:

1. В первый столбец записываем номера по порядку.

2. Во второй – разности парных значений di в неубывающем порядке.

3. В третий – номера по порядку k парных разностей. Так как в нашем случае n = 10, то k изменяется от 1 до n/2 = 5.

4. В четвертый – разности Dk, которые находим таким образом:

– из самого большого значения d10 вычтем самое малое d1 и полученное значение запишем в строке для k = 1,

– из d9 вычтем d2 и полученное значение запишем в строке для k = 2 и т.д.

5. В пятый – записываем значения коэффициентов ank, взятые из таблицы, используемой в статистике для расчета критерия Шапиро и Уилка (W) проверки нормальности распределения (Приложение 2) для n = 10.

6. В шестой – произведение Dk×ank и находим сумму этих произведений:

;

.

Наблюдаемое значение критерия Wнабл находим по формуле:

.

Проверим правильность выполнения расчетов критерия Шапиро и Уилка (Wнабл) его расчетом на компьютере по программе «Статистика».

Расчет критерия Шапиро и Уилка (Wнабл) на компьютере позволил установить, что:

.

Далее по таблице критических значений критерия Шапиро и Уилка (Приложение 3) ищем Wкрит для n = 10. Находим, что Wкрит = 0,842. Сравним величины Wкрит и Wнабл.

Делаем вывод: так как Wнабл (0,874) > Wкрит (0,842), должна быть принята нулевая гипотеза о нормальном распределении генеральной совокупности di. Следовательно, для оценки эффективности применявшейся методики развития скоростных качеств следует использовать параметрический t-критерий Стьюдента.