Метод корреляции и регрессии. Значение и основные расчеты зависимостей в линейных уравнениях связи

Причинно-следственные отношения — это связь явлений и процессов, когда изменение одного из них — причины — ведет к изменению другого — следствия.

Причина — совокупность условий, обстоятельств, действия которых приводит к появлению следствия. Причинные связи носят всеобщий многообразный характер. Для обнаружения причинно-следственных связей необходимо отбирать отдельные явления и изучать их изолированно.

Статистическое изучение связей состоит из этапов:

1) качественный анализ изучаемого явления

2) построение модели связи (методы статистики)

3) интерпретация полученных результатов.

В статистике по степени тесноты различают функциональную связь и стохастическую зависимость. Функциональной называют связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называетсястохастической. Частным случаем стохастической связи является корреляционная связь, при которой изменении среднего значения результативного признака обусловлено изменением факторных признаков.

По направлению выделяют связьпрямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. В случае обратной связи значения результативного признака изменяются под воздействие факторного в противоположном направлении по сравнению с изменением факторного признака.

По аналитическому выражению выделяют связи прямолинейные и нелинейные.

Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии — то нелинейной или криволинейной.

Для выявления наличия связи, ее характера и направления используются методы приведения параллельных данных, аналитических группировок, графический, корреляции и регрессии.

Метод проведения параллельных данныхоснован на сопоставлении двух или нескольких рядов статистических величин. Данное сопоставление позоляет установить наличие связи и получить представление о ее характере.

Метод аналитических группировок. Сущность метода аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку.

Графический метод

Графическая взаимосвязь двух признаков изображается с помощью поля корреляции.

Корреляция— это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

Виды зависимостей:

1) парная корреляция — связь между двумя признаками (между двумя факторными либо между факторным и результативным признаком)

2) частная корреляция — зависимость между результативным и одним факторным признаком при фиксированном значении других факторных признаков

3) множественная корреляция — зависимость результативного и двух и более факторных признаков.

Регрессия-оценка формы связи

По форме зависимости различают:

- линейную регрессию, которая выражается уравнением прямой (линейной функции) вида:

- нелинейную регрессию, которая выражается уравнениями вида:

парабола -

гипербола - и т.д.

 

24. Понятие вариации и ее значение. Абсолютные и относительные показатели вариации.

Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов.

Исследование вариации в статистике имеет важное значение, т.к. дает возможность оценить степень воздействия на данный признак других варьирующих признаков. Определение вариации необходимо при организации выборочного наблюдения, построения статистических моделей, разработке материалов экспертных опросов и т.д.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютнымотносятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратичное отклонение.

1. Самым распространенным абсолютным показателем является размах вариации, определяемый как разность между наибольшим (Хmax) и наименьшим (Хmin) значениями вариантов.

Этот показатель прост для расчета, что и обусловило его широкое распространение. Однако, он улавливает только крайние отклонения и не отражает отклонений всех вариант в ряду.

2. Для обобщающей характеристики распределения отклонений рассчитывают среднее линейное отклонение , определяемое как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:

- невзвешенное среднее линейное отклонение

- взвешенное среднее линейное отклонение

Среднее линейное отклонение как меру вариации признака применяют в статистической практике редко, т.к. во многих случаях этот показатель не устанавливает степень рассеивания.

3. Меру вариации более объективно отражает показатель дисперсии (- средний квадрат отклонений), определяемый как средняя из отклонений, возведенных в квадрат:

- невзвешенная или - взвешенная

4. Корень квадратный из дисперсии s «среднего квадрата отклонений» представляет собойсреднее квадратическое отклонение:

Среднее квадратическое отклонение (СКО) выражается в тех же единицах измерения, что и признак ( в литрах, тоннах, рублях, %-х и т.д.). СКО является мерилом надежности средней. Чем меньше СКО, тем лучше средняя арифметическая отражает собой представляющую совокупность.

К относительным показателям, позволяющим сравнивать характер рассеивания в различных распределениях, относятся следующие:

1. Коэффициент осциляции — отражающий относительную колеблемость крайних значений признака вокруг средней:

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины:

3.Коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средней величины.

Если n>33% , то это говорит о большой колеблемости признака в изучаемой совокупности.

 

Выборочное наблюдение.

К выборочному наблюдению статистика прибегает по различным причинам. Основными являются следующие причины:

Когда экономически не выгодно сплошное наблюдение. Сплошное обследование больших статистических совокупностей, состоящих из десятков и сотен тысяч единиц, потребовало бы огромных материальных, финансовых и иных затрат. Использование же выборочного обследования позволяет значительно сэкономить силы и средства, что имеет немаловажное значение.

Возможность значительно ускорить получение необходимых данных. Ведь при обследовании, скажем, 10 % единиц совокупности будет затрачено гораздо меньше времени, а результаты могут быть представлены быстрее и будут более актуальными. Фактор времени важен для статистического исследования особенно в условиях изменяющейся социально-экономической ситуации.

Когда наблюдение связано с уничтожением единиц наблюдения или невозможностью повторного исследования отобранных и обследованных единиц. Например, исследование качества продукции, если она при этом уничтожается. На основе выборочного наблюдения изучается, например, качество кормов, молока, зерна и т. д.

Выборочное наблюдение, статистическое наблюдение, при котором исследованию подвергают не все элементы изучаемой совокупности (называемой при этом "генеральной"), а только некоторую, определённым образом отобранную их часть.

В выборочном наблюдении используются понятия «генералъная совокупность» – изучаемая совокупность единиц, подлежащая изучению по интересующим исследователя признакам, и «выборочная совокупность» – случайно отобранная из генеральной совокупности некоторая ее часть.

Если совокупность является качественно однородной, то принцип случайности реализуется простым случайным отбором объектов выборки. Простым случайным отбором называют такую процедуру образования выборки, которая обеспечивает для каждой единицы совокупности одинаковую вероятность быть выбранной для наблюдения, для любой выборки заданного объема.

Различают два способа отбора: повторный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку.При бесповторном отборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается.

В зависимости от методики формирования выборочной совокупности различают следующие основные виды выборки:

· Собственно случайная выборкаформируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения собственно случайной выборки генеральная совокупность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном порядке отбирается достаточное число единиц.

· При чисто механической выборкевся генеральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, составленного в каком-то нейтральном по отношению к изучаемому признаку порядке, например по алфавиту. Затем список единиц отбора разбивается на столько равных частей, сколько необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отбирается одна единица.

· При типической выборкедо начала ее формирования генеральная совокупность единиц разбивается на типические группы. При этом очень важным моментом является правильный выбор группировочного признака. Выделенные типические группы могут содержать одинаковое или различное число единиц отбора. В первом случае выборочная совокупность формируется с одинаковой долей отбора из каждой группы, во втором – с долей, пропорциональной ее доле в генеральной совокупности.

· Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подлежащие обследованию, а группы единиц (серии, гнезда). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы.

· комбинированный (ступенчатый ) отбор может сочетать в себе сразу несколько способов отбора (например, или случайный и механический);

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов

Основные параметры совокупности указаны в таблице: